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Abstract: Collecting and preserving the smart environment logs connected to cloud storage is
challenging due to the black-box nature and the multi-tenant cloud models which can pervade log
secrecy and privacy. The existing work for log secrecy and confidentiality depends on cloud-assisted
models, but these models are prone to multi-stakeholder collusion problems. This study proposes
’PLAF,’ a holistic and automated architecture for proactive forensics in the Internet of Things (IoT)
that considers the security and privacy-aware distributed edge node log preservation by tackling
the multi-stakeholder issue in a fog enabled cloud. We have developed a test-bed to implement
the specification, as mentioned earlier, by incorporating many state-of-the-art technologies in one
place. We used Holochain to preserve log integrity, provenance, log verifiability, trust admissibility,
and ownership non-repudiation. We introduced the privacy preservation automation of log probing
via non-malicious command and control botnets in the container environment. For continuous and
robust integration of IoT microservices, we used docker containerization technology. For secure
storage and session establishment for logs validation, Paillier Homomorphic Encryption, and SSL
with Curve25519 is used respectively. We performed the security and performance analysis of the
proposed PLAF architecture and showed that, in stress conditions, the automatic log harvesting
running in containers gives a 95% confidence interval. Moreover, we show that log preservation via
Holochain can be performed on ARM-Based architectures such as Raspberry Pi in a very less amount
of time when compared with RSA and blockchain.

Keywords: cloud computing; fog computing; docker containers; Holochain; privacy preservation;
log security; proactive forensics

1. Introduction

Cloud computing has provided numerous features such as on-demand services, resilience to
security attacks, and ubiquity to many fields in enterprise networks [1–3]. Usually, Small and Medium
Enterprises (SMEs) put their workload on the cloud, and it is estimated that 83% of total business
will be on cloud reaching up to $411 billion of market value [4]. Security and privacy of data have
always been the ever-growing and prime issue in cloud computing models and services. In 2018,
the Massachusetts Institute of Technology (MIT) forecast that the ransomware would be the prevalent
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cyber threat in cloud computing [5]. In the cloud environment, the logs are the first and significant
piece of evidence for digital forensic investigations. To secure the log data in cloud storage, the existing
cloud logging schemes use encryption; thus, the validity of logs becomes uncertain in the presence of
an adversary and a malicious Cloud Service Provider (CSP) [6].

The ubiquity, smartness, and communication abilities of the Internet of Things (IoT) devices
coupled with cloud, provide tremendous assistance in healthcare, industrial control systems,
smart homes, and transportation [7–9]. As signposted by CISCO, the estimation of IoT revenue
will be approximately $14.4 trillion between 2013 to 2022. On the other hand, security and privacy
threats such as disruption of IoT networks, Denial of Service (DoS) attacks, and traffic analysis attacks
are the main problems in the digital investigation in a cyber-crime scene [10,11]. An illustration of
security trepidation in IoT-based smart environments as shown in Figure 1.

Figure 1. Threats in different IoT scenarios.

Cloud-connected IoT edge nodes are fragile on security management as they are geographically
distributed from the cloud, which makes it easy for an adversary to launch an attack and remove the
logs [12,13]. Moreover, edge nodes are not energy efficient and have potential problems for continuous
log collection and preservation [14]. For instance, malicious users, attackers, edge-nodes, and the
attacks of the rogue gateway and the rogue data center may be disguised as regular fogs between
the data center and the users [15,16]. In May 2018, an IoT system with routers, surveillance cameras,
and digital video recorders was disabled for four days after an attempt was made to hinder the service.
There are many intrusion attempts at these service endpoints and the processing of forensic data are
critical for ensuring the protection of endpoints and for resolving protection accidents.

Digital forensics has become more relevant in the fog cloud because fog nodes and edge nodes
are targeted [17]. As a consequence, digital experts need a fog-cloud forensic data collection method,
as attackers capture, exploit and remove the fog nodes, boundary nodes and the computers, rendering
the processing of forensic data from fog nodes impossible [18]. Furthermore, the data of IoT devices are
updating with time and, if a crime occurs using these devices, the attacker always intends to remove
the traces of logs that are sent to virtual machines in clouds [19,20]. Therefore, a logging scheme is
required to collect log data without CSP cooperation.
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In case of a crime, sometimes it is not possible to separate and shut down the victim device and
to carry it to the evidence extraction laboratory as it is done in traditional digital forensic scenes in
which the investigator gets the equipment to obtain evidence [21]. Consider an example in which an
attack is launched on an IoT device, the device is forcefully shut down and the volatile data of forensic
significance are lost and there is no way to reconstruct the incident. Therefore, IoT forensics need to
collect and retain useful knowledge for forensic purposes proactively. This will improve the forensic
capability of the environment and will reduce the cost of incident responses [11]. Logging applications
must define and solve these issues in fog-cloud environments.

Recently, the fog-cloud computing paradigm has been proposed, which offers different tools that
focus on the advantages of fog computation [22]. In one of the top 10 strategic technical developments
in 2018, Gartner has classified “fog cloud” as “fog driven”. The implementation of the fog cloud
model demands more efforts to upgrade the network, expand network availability, increase network
efficiency, and get services closer to the consumer in a cost-effective manner [23]. Customer facilities
are less safe and less efficient in the edge-cloud than the cloud structures. The reason is that a fog node
is more user-appropriate than the edge-cloud.

Fog computing expands the computing and storing properties of cloud computing for the network
edge which is a reasonable solution that provides low-latency via computational offloading. To avoid
delay in edge cloud network communication, fog assisted IoT network is used to assign the tasks.
This is done through computation offloading which lessen the load of the core network [24,25].
Moreover, it delivers short delay services, particularly for those computation-exhaustive and
delay-sensitive jobs. Conversely, fog nodes also face constrained computing resources paralleled to the
cloud. Therefore, fog node auxiliary offloads the task complexity to the cloud to attain supplementary
computing resources. This mutually enhances the computing and communication resources in fog
edge and cloud nodes [26,27].

Nonetheless, considering that the fog-enabled cloud edge security and privacy design and
specifications have not been described explicitly, it is recommended that a fog enabled cloud framework
should be used for security services before the deployment of the forensic logging mechanism [28].
Unlike a traditional cloud provider, fog-cloud systems are provided with fog nodes.

The following theoretical situation can demonstrate the particular problem that we anticipate to
solve: An IoT edge node connects directly to the cloud and send its statistics for analytics. The attacker
launches an attack to edge device for two purposes: (i) compromise the edge device and use it as a bridge to
get into the cloud and launch a bigger attack; (ii) delete the log information of edge device or make it dead so
none of the digital assets can be retrieved for forensics reincarnation.

In this research, we propose a Proactive Forensics in IoT, Privacy-Aware Log-preservation
Architecture in Fog-enabled-cloud using Holochain and Containerization Technologies (PLAF).
The proposed architecture introduced the holistic log preservation scheme which ensures the security
and privacy of logs generated by IoT devices by considering the features of the fog-cloud. The salient
features of the proposed PLAF are; Log preservation via ensuring log integrity, log verifiability,
log provenance, and temper resistance, Privacy preservation automation through automated log collection
and Tackling multi-stakeholder problem via assuring ownership non-repudiation and trust admissibility.
All the aforementioned features are incorporated into the three-layered architecture of PLAF that are;
Layer 1: Dedicated for Log generation and collection Layer; Layer 2: Performs log preservation task
at fog level and Layer 3: Secure enclave at the cloud to securely store logs data and preserve proof
of past logs. We have implemented the test-bed comprising of these three layers using different
state-of-the-art technologies, which are: C&C (command and control) bots for autonomous log
collection, Docker containers to orchestrate the IoT microservices, and Holochain for preservation.

Our Contributions

We propose an architecture for continuous log collection and preservation for IoT devices in
a fog enabled cloud environment for proactive forensic aware logging. Moreover, the proposed
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PLAF architecture performs the forensic aware logging and considers automated, secure, and privacy
concerned distributed edge node log collection in fog-cloud by tackling the multi-stakeholder collusion
problem. The contributions to the proposed scheme are as follows:

1. Privacy-Preserving Automation: For continuous and automated log collection, we used
non-malicious botnets at fog level which provides the Privacy-Preserving Automation for
IoT environment.

2. Proof of past log (PPL) preservation at fog level via Holochain: Preserving log integrity, privacy,
provenance trust admissibility via Holochain distributed network instead of blockchain which is
a more power-consuming approach.

3. Secure session management and log storage for log validation and verification are done via SSL
mutual authentication with curve25519 and Paillier homomorphic encryption, respectively.

The organization of the paper is as follows: Section 2 discusses related work and background
studies; Section 3 defines the threat model and threat scenarios, Section 4 demonstrates the proposed
PLAF architecture, Section 7 concludes the paper and outlines plans for future work.

2. Related Work

The existing research proposes many solutions such as web-based management console and
read-only API to secure logs for the reliable and efficient forensic process. However, the proposed
schemes do not ensure the integrity and confidentiality when CSP is not trustworthy. Some other
schemes provided the integrity privacy of preserved logs from the external attacker but failed to
provide integrity and confidentiality when the logger itself is untrustworthy or a malicious user.
The inevitability of honest and reliable log in the digital investigation is crucial. These issues have
been investigated by the researchers in different dimensions.

Logging is a continuous process that keeps a record of each event occurred in the framework.
This includes both the equipment and the programming part where numerous records are alluded
to as log documents. The reason for log documents varies due to the nature of the product and the
application that creates the occasions. Despite adaptation to non-critical failure, logs are a fundamental
part of security control and advanced investigations as they can help the associations to identify
incidents, security infringement, and noxious exercises.

A log securing scheme is given in [29] which depends on the security logs in the operating system.
They used eucalyptus to set up their cloud environment and snort for IP tracing. They examine the
performance of eucalyptus components after launching a DDoS attack on the cloud storage using
the virtual machines that reside in cloud storage. As a result, they successfully identified the IP of
attacking machines, the locks requested by the attacker, and the type of browser used. A management
module called a cloud forensic module was implemented in the cloud infrastructure. The purpose of
this module is to connect with the kernel, for example, a system call provides access to the network
stack and virtual file system to obtain the logs of the machine. The limitation in his work is that the
privacy and availability of the required logs haven’t been validated [30].

The problem is the infrastructure layer needs modification so Ref. [31] provides a secure logging
scheme for cloud infrastructure. The main feature of this work is to provide access logs such as network
process logs of read-only API through CSP. Another scheme was proposed in [32] and implemented
in FROST; however, this scheme failed to show how to protect the integrity and privacy of users log
such as instigators and CSP. Another game based logging scheme was presented in [33] which states
a use-case based game. This game-based approach is dependent on the model of the business and
logging the security. This research proposed to generate the logs based on the following attributes
such as timestamp, user ID, session ID, application ID, severity, and categorization of the morgue.

Variants of bloom filter technique are used in peer to peer networks and are presented in [34]
for log integrity verification. The work presented in [35] automatically collects and preserves the
logs. It also uses non-malicious botnets as-a-service in the cloud layer with no modification in cloud
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infrastructure. A proactive cloud-based cross-reference framework is presented in [36] to verify the
integrity of logs. A model is presented in [37] to minimize forensic evidence analysis time in the cloud
environment through MapReduce. Another Blockchain-based secure logging framework is analyzed
in [38] which provides cloud level integrity checking as storage. Forensic aware ecosystem for IoT
termed as FAIoT is proposed in [39] which delivers physical device information in a virtual system for
preservation, provenance, and integrity.

Zowoad et al. [40] proposed RESTful APIs to guarantee secrecy and minimize the potential
for tampering using Proof of Past Log (PPL). For convenient and proficient proof examination,
Kebande et al. proposed a Cloud Forensic Readiness Proof Analysis System that uses appropriate
equipment in the cloud environment through MapReduce [41]. The framework contains modules
including forensic database and Forensic MapReduce Task (FMT) modules. FMT recovers the
potential advanced proof through the MapReduce process, including criminology logs, virtual pictures,
and hypervisor mistake logs. All these logs are then placed in the forensic database.

Cloud log assuring soundness and secrecy(CLASS) is proposed in [42] which ensures maintenance
of logs in the cloud through deviated encryption. McCabe et al. produced PPL using Rabin’s
fingerprint strategy and blossom channel [43]. Blockchain-based log preservation is also offered
in their proposed scheme. It utilized the unchanging property of blockchain to guarantee the
classification and integrity of cloud logs and proposed secure logging-as-an administration in the
cloud environment. The plan includes steps such as extraction of logs from a virtual environment;
formation of scrambled log passages for each log using open key encryption; and capacity of encoded
log sections on the Blockchain.

An open verification model through Blockchain to guarantee the integrity of logs in the cloud is
proposed in [44] using an outsider reviewer. The authors used homomorphic and single direction hash
capacities to create the labels for log passages and Merkel tree structure for capacity. Another scheme
named Probe-IoT ensures the confidentiality, anonymity, and non-repudiation of publicly available
pieces of evidence by using a digital ledger [45].

Harvesting and preserving forensically useful data from smart environments is presented as
IoT-Dots in [46]. A holistic overview of normal and malicious behavior in log collection [47]. A fog
based IoT reediness forensic framework is presented [48]. eCLASS proposed a distributed network log
storage and a verification mechanism of edge nodes [24]. Table 1 provides the comparison of related
techniques on the bases of adversarial model assumptions, security features, and limitations.

After the detailed analysis of the existing literature on secure logging in a cloud-based
environment for IoT and other network environments, we yielded that most of the solutions use
Blockchain, RSA, and open key encryption to secure logs in the cloud environment. It is important
to note that there is a problem and that is when we need to collect the logs of a smart environment
which is multi-hop from the cloud and when the log integrity is threatened, the network latency
is tremendously increased during the log sending. Therefore, there is a need for an architecture
that preserves the log privacy, provenance, and confidentiality along with scalability of edge node
integration in an efficient fashion. The subsequent sections provide the detail of proposed scheme
based on discovered solutions along with threat model and security requirements [49,50].
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Table 1. Comparison of existing work schemes.

Ref. Tools and Technique Adversarial Model Assumption Security Features Limitations

[29] Used eucalyptus for cloud
environment

Used snort for malicious activity
tracing. Malicious user can
eavesdrop messages

Successfully traced the malicious
activity and necessary logs

Only provides the acquisition of logs,
didn’t address integrity.

[30] Implemented a forensic module in
infrastructure layer.

CSP or user is untrustworthy Implemented a module that gather
several logs (network, IoT, kernel,
system calls)

Integrity and privacy of logs cannot
be validated

[31] Read only API by CSPs API can be exploited Logs (network, process) are available Integrity and confidentiality is
not addressed

[32] Used FROST IaaS dependency Access logs (API, virtual machine
and firewall)

Confidentiality and integrity are
not addressed

[33] An architecture based on use-cases
to access logs

Use cases malfunctioning
or loopholes

Provides different logs of different
operations layers

Integrity of data and confidentiality
of logs is not maintained

[34] Hierarchical bloom filer,
hash-based payload

Hierarchy may get exploited Payload information in hierarchy Complex due to
hierarchical structure

[35] Used botnets as a services No modification is required in cloud
infrastructure

Implanted non malicious botnets to
collect and preserve logs

Deficiencies in implementation and
prototypical assessment

[36] Use FTK, EnCase No security considerations Cross reference of forensic logs Neither the prototype of the model is
given nor the confidentiality
is addressed

[37] MapReduce Post -Incident Reduces forensic proof examination
period in the cloud

Private application and
exemplary estimation

[38] Secure logging PPL can be demolished Integration with cloud database Temper resistant threat

[39] FAIoT Attacker can manipulate
the evidence

Provenance Preservation The device is physically needed

[40] Secure logging as-a-service Colluding among addressing entities Provides RESTful APIs for integrity
verification

Authentication and provenance
is missing

[41] Cloud Forensic Readiness
Proof Analysis

PPL is tempered Recuperated the possible radical
evidence

Provenance is not addressed
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Table 1. Cont.

Ref. Tools and Technique Adversarial Model Assumption Security Features Limitations

[42] Cloud Log Assuring Soundness and
Secrecy (CLASS)

Deviated encryption of logs Secure PPL via Rabin’s fingerprint
strategy and blossom channel

Performance overhead while
increasing number of logs
Provenance and Authentication

[43] Unchanging property of Blockchain Proposed secure logging-as-an
administration for the cloud

Integrity Log verification Formation of scrambled log passages
for each log and using open key
encryption

[44] Open verification model via
Blockchain

Prevent logs from outsider Markel tree and Homomorphic
single track hash for integrity

Resource consumption

[45] Probe-IoT Ensures provenance, integrity ,
confidentiality

Provides a digital ledger to track all
of the records in an IoT system

Performance overhead

[46] IoT-Dots Collects forensic data in early stages
and then uses in future analysis

Harvest forensically useful log from
smart apps of IoT environment

Increased network latency and
Provenance

[47] Prov-Things Provides holistic overview of
malicious and normal behavior

Preserve forensically needed data
on devices

only collect logs of provenance and
confidentiality

[48] Fog based IoT forensic framework Consider cyber-attacks on
IoT systems

Provides early bird alarm of attack System flow must be
auxiliary assessed

[24] eCLASS Threat to log integrity in centralized
in cloud storage

Edge cloud log securing via
distributed network

Authentication Edge directs
the cloud
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3. Threat Model and Security Requirement Modelling

For a forensic data collection, an edge cloud environment must be taken into account for possible
security risks, such as log leakage or forensic data removal. Unlike traditional cloud infrastructure,
the edge-cloud services are supported using fog nodes. Security monitoring is inadequate with edge
nodes delivering services because they are locally isolated from the cloud [51]. This geographical
division of management is the main target of malicious users or attackers. Moreover, the log data
of edge nodes cannot be securely stored and maintained at cloud storage. Furthermore, several
manipulated log data can be entered, and log removal may be performed to prevent forensic
investigators for the reincarnation of crime scenarios using the logs.

3.1. Modelling Attack Possibilities

We used four metrics to model the attack possibilities based on multi-stakeholder (CSP,
investigator, and attacker) colluding issue and possible integrity theft from multi-stakeholder.
These four metrics are: threat, the threat to the asset, possible safeguards, and security controls.
Table 2 maps the actions of threats scenarios due to possible threats to assets and thus provides the
essential security control requirements. The illustration of the threat model discussed in Table 2 is
given in Figure 2 that provides an overview of the relationship amongst the threat agents and the
cloud logging system. The terms used in threat modeling and attack possibilities are explained below.

• Asset: Log generated form edge nodes and sent to cloud and fog nodes for log preservation.
These logs are the main asset to be protected from manipulation, tampering, and removal.

• Threat Agent: Multi-stake holders are all the corresponding entities that are assumed as threat
agents which are, CSP, investigator, an attacker, or malicious user neighboring with the cloud
storage in a cloud environment. These threat agents are characterized based on zero trust policy.

• Threat to Asset: Possible collusion among threat agents to asset, integrity theft to logging from
multi-stakeholders.

• Possible Safeguards: Mechanisms and designed practices to mitigate threat possibilities.
• Security Controls: Those implemented and applied security requirements which are being applied

to prohibit and minimized the threats and attacks.

Figure 2. Threat model.
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Table 2. Modelling attack possibilities.

Threat Threats to the Assets Possible Safeguards Security Controls

T01: Edge node tampering.
Computation overhead in edge node

TA01: Attacker abolish the device ·
The data of edge node device
is altered

PS01: Secure and continuous log
collection · Backup the Device
orchestration image

SR01: Automation of log collection ·
Orchestration of edge device at fog level

T02: Attacker launches an attack to
the cloud storage

TA02: Remove or manipulate the
sensitive data. Launch the side
channel attack to compromise CLS

PS02: Intervene and secure the path
between edge node and cloud node

SR02: Secure the fog level log data
integrity· Ensure the integrity of the
data at cloud storage node.

T03: Privacy violation at CSP and
confidentiality violation

TA03: Denial from CSP of log
manipulation, tempering or removal

PS03: service confidentiality must
present at fog level to store proof of
past logs

SR03: Non repudiation and service
confidentiality

T04: agent becomes dishonest or
compromised

TA04: authentication threats while
accessing the logs

PS04: mutual entity authentication
scheme must be used

SR04: Public key cryptography for
mutual authentication

T05: The CSP and the attacker
colludes (CSP may be compromised
or malicious). Ownership repudiation

TA05: attacker is able to get the PPL
or learn the information from the logs

PS03: CSP would not be capable to
disprove the available PPL. Attacker is
not able to recover log material from
distributed log

SC05: Log verifiability, trust
admissibility and provenance

T06: CSP and investigator colludes.
Ownership repudiation

TA06: CSP is malicious or
untrustworthy then deny or hide
provenance of the proof of logs after
publishing them.

PS06: It’s not credible for the detective
to erase any log from the tenacious
storing before giving it to the court
of law

SC06: Non-Repudiation, temper
resistant PPL, and provenance

T07: Attacker and
investigator colludes

TA07: Tampering the PPL to modify
the evidences to protect the criminal
or to frame the honest user.

PS07: There must be secure enclave
between path of CLS and edge node
none of log entries can be changed at
device level

SC07: Provenance of PPL. Light weight
Hash block to secure the PPL· Reduce
performance overhead at edge level to
secure PPL
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3.2. Modeling Security Requirements

We have identified the essential security requirements from the results of the previous section
which are: ownership non-repudiation, trust admissibility, provenance of PPL, log verifiability,
log integrity, temper resistance, and privacy-preserving automation. We modeled these security
requirements (SR) using secure tropos methodology (STM) evaluated using the SecTro tool as well.
The STM is a security-oriented extension of Tropos methodology and is reinforced by SecTro tool [52].
In STM, there are standards that are used to model the security requirement. These standards are
illustrated in Figure 3. In what follows, the identified security requirements are explained and their
modeling is illustrated via SecTro Tool.

1. Ownership Non-Repudiation: Since cloud servers contain information for other users,
the malicious cloud users may access the data logs of other users. The CSP can deny reporting
the logs’ publication. The CSP creates and maintains logs for all users on certain logging systems,
but users can not recognize logs. As a consequence, the implication of log integrity and ownership
becomes vague and the CSP can also dispute the data. Figure 3 illustrates the security modeling
of this requirement.

2. Trust Admissibility: The forensic data of logs generated in edge clouds should be used in
court. For legal admissibility, logging, manipulation, or omission during log-data generation,
management, and verification processes should be reviewed. Moreover, log collection on the basis
of legal security policies for edge clouds should be performed because unauthorized log data
collection infringes admissibility. Trust admissibility is modeled with ownership non-repudiation
in Figure 4.

3. Provenance of PPL: Logs generated on cloud servers can only be read by users and the service
provider on certain cloud logging systems, but other CSPs, users, and investigators can access
logs that include service information, user status, user access frequency, and location. As the
service log is indeed a confidential asset, it is imposing on the secrecy of the service to reach
other parties (other customers, CSPs, investigators). Threats to this requirement are modelled in
Figure 5.

4. Log Verifiability: Subsequently, the architecture PLAF is designed to produce fog-activated
logs from the distributed edge-nodes network, log accuracy, consistency, and integrity require
verification measures. Thus, a fog cloud logging architecture should be able to review the created
logs and to verify data modulation and corruption.

5. Log Integrity: Provides log chains in a whole unchanged manner during the log collection state.
The automated forensic analysis architecture should be correctly logged, and log details should
show that no fraud has taken place. Distributed logs will indicate that they are connected and
record the behavior that the requested service is using. Eventually, it is important to check that
the reports are properly reported by users, researchers, and auditors.

6. Temper Resistance: This feature provides resistance to deliberate modification and manipulation
of log data via unauthorized channels, both between storage and during transit.

7. Privacy-Preserving Automation: To avoid the computation overhead in edge node devices, where
real-time IoT devices are producing data continuously, we used microservices orchestration
for managing the integration of IoT devices at fog node. It provides continuous integration
and less downtime during service migration. We used C&C automated bots in containers for
autonomous log collection and preservation. Figure 6 gives the security feature modeling of
privacy-preservation automation.
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Figure 3. Secure Topos methodology.

Figure 4. Ownership non-repudiation and trust admissibility modelling.

Figure 5. Log integrity and modification threats modelling.

Figure 6. Privacy preserving automation modelling.

4. Proposed Architecture PLAF

We proposed a holistic architecture that addresses the main issues in our findings and implements
the related security requirements in the proposed architecture PLAF. The main idea of PLAF is:
“Automated and secure log collection and preservation of smart environment logs from distributed
edge nodes in fog enabled cloud environment”. To securely preserve and transfer logs from IoT devices
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to cloud while considering the task offloading and delay sensitivity, we assisted the architecture of
PLAF by intervening fog layer amid the IoT and cloud layer.

Fog computing lessens the cloud connotation by dint of pre-processing information generated
by the sensors and further IoT devices. The logging and pre-processing in PLAF is performed at fog
node and governed by fog node controller to offload the tasks of the edge layer. Conversely, fog node
only collects and preserves the PPLs in dedicated format and transfer to the cloud log storage for
further secure log archiving and log verification operations. All of the three layers offers different
security controls for log secrecy and privacy to tackle multi-stakeholder issue and log alteration. In the
following section, all three of the layers are described in detail. All of the operations and information
flow of PLAF architecture are given in Figure 7 and described in the steps below:

1. Create an IoT environment.
2. Initiate Docker Swarm Management Module (DSMM) and Central Management Module (CMM)

for the placement and orchestration of IoT microservice using docker swarm manager at fog
worker node.

3. Placement of bots in a container beside the microservice to collect logs.
4. Initiate the Data Preservation Module (DPM) for log preservation at fog worker nodes via

Holochain and send all the Proof of Past Logs (PPL) to the central manager node.
5. Fog controller node administrates the DSMM, CMM, and DPM. In addition, prepare the PPL to

transfer from the central manager node to cloud log storage.
6. Archiving the logs from fog node controller to cloud log storage.
7. Secure the logs at Cloud Log Storage (CLS) via Piallier Homomorphic Encryption (PHE).
8. Investigator initiates the secure session to privately query the logs for forensic investigation via

SSL with curve25519 mutual authentication.
9. Then, for validating the logs at CLS, secure sessions are established amid fog node and

investigator to get PPLs and verify log integrity.

PLAF is comprised of three layers which are: Log generation and collection Layer,
Log Preservation Layer, and Log Archiving layer. The security threats that are described in
the threat model are addressed in these three layers of PLAF by implementing the security
requirements, which are ownership non-repudiation, trust admissibility, temper resistance,
log integrity, log verifiability, provenance of PPLs, and privacy-preserving Automation. The mapping
of threats and corresponding security features align with essential security requirements in different
layers of PLAF are elaborated and discussed in Table 3. The details of all activities performed with
protocol-specific information in the three layers are illustrated in activity diagram of PLAF, see Figure 8.
The overview of three layers of PLAF is described below:

Log Generation and Collection Layer: This layer offers the log harvesting and collection,
The orchestration of IoT microservices is continuous Integration of new arrivals performed. In addition,
it provides the autonomous log collection generated by IoT devices via C&c bots which are
placed in the container of microservice. This layer includes two modules DSMM and CMM for
privacy-preserving automation.

Log Preservation Layer: Secure Log preservation and generation of Proof-of-past logs is achieved
in this layer. We used Holochain to perform the log Preservation in fog nodes. DPM is the module of
this layer to generate PPL.

Log Archiving Layer: Secure log Storage and secure session establishments for querying the log
from storage are performed here. Logs are stored here via Paillier Homomorphic Encryption and SSL
with curve25519 is used for secure session establishment for querying. Two aforementioned operations
are performed via SDM.
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Figure 7. PLAF workflow.
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Figure 8. Details of procedures in PLAF layers.



Electronics 2020, 9, 1172 15 of 40

Table 3. PLAF security layers.

Security
Layer

Threat Security
Requirement/Protection
Objective

Security Mechanism Security Feature
Module

Layer 1 Log
Generation
and Collection
Layer La

Edge node
tampering
Computation
overhead

Privacy-Preserving
Automation by
scalable orchestration
of edge devices and
autonomous log
collection

Docker container
orchestration for
continuous
integration of
microservices.
Automated C&C bots
to collect logs from
microservices

Docker Swarm
Management
module (DSMM)
Central Manger
Module (CMM)

Layer 2 Log
Preservation
Layer

Manipulation in
Logs Storage

Log Integrity Temper
Resistance Provenance
of PPLs Preserving log
integrity

Creates Log Chains
of PPL and shared in
Distributed Hash
Tables (DHTs) of the
Holochain Network

Data
preservation
(DPM)

Layer 3 Log
Archiving
Layer

Investigator may
Impersonated or
Compromised.
Attacker steals
logs from CLS

Log Verifiability, Trust
Admissibility for
Entity authentication,
and Ownership
non-Repudiation.
Secure storage of logs

SSL with Curve25519
and Paillier
Homomorphic
Encryption

SDAM (Secure
Data Archiving
Module)

4.1. Log Generation and Collection Layer (Layer One)

This is the first driving part of the architecture where the logs are harvested and sent to the
next layer of the PLAF. This layer performs the log generation and collection mechanism and these
two operations are administered by DSMM and CMM. The DSMM administrates the other container
worker nodes along with CMM. Both the CMM and DSM run on a fog node controller so having a
central fog node controller provides the functionality to get the fine-grained control of running services
in terms of both orchestration and monitoring. Other fog nodes called worker fog nodes run the
app-containers and device microservices along with automated log collection bots.

To understand the DSMM and CMM operation, we illustrate an example. An Xbee-Stick is a
connected IoT device node, after its connection, CMM is notified and the ZigBee application is started
as swarm worker node and map the device in swarm cluster. CMM sends the notification to Docker
swarm orchestration service to create the containerized microservices of a respective node based on
the requirement of IoT devices such as Xbee-Stick. The app-container of IoT device node downloads
the Docker image of respective microservices and starts. Following these two, DSMM and CMM of
Layer one are discussed. Figure 9 provides the placement of CMM and DSMM in the controller node
and their communication with worker nodes. We can see in Figure 9 that the central manager node
communicates with the fog worker nodes in a back and forth manner. This is an illustration of layer
two mechanisms where manager nodes send commands to worker node and receive their responses
from them as well.
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Figure 9. Placement of CMM and DSMM in a controller node.

4.1.1. Central Management Module (CMM)

We developed the OpenIoTFog Central Manager Module (CMM) which runs beside Docker
Swarm Manager (DSM). The edge devices orchestrated in containers at fog worker nods may require
some software packages for computing and data storage capabilities. Therefore, we deployed CMM to
monitor the resource requirement of edge device microservice running in a container and inform the
DSMM about updates in terms of software packages and resource allocation. The orchestration
or virtualization of microservices is established in the context of the OpenIoTFog toolkit [53].
CMM manages and executes the service functionalities of each via following four operations which are:
monitoring the health of fog node by and its resources (CPU, Storage, memory); providing the glimpse
of “things” connected to manager; detecting the changes and autonomously execute commands on
connected devices; and managing the access control of the device to the container for provisioning the
swarm services.

4.1.2. Docker Swarm Service Manager Module (DSMM)

DSMM takes the information from edge devices from CMM in terms of resource requirements
for scalable and continuous device integration. We used the Docker container orchestration tool
for IoT microservice orchestration. Docker container technology shrinks the application overhead
in deployment at fog node and utilizes the device resources and delivers application scalability.
The Docker container orchestration environment is the best choice for IoT ecosystem orchestration,
where the first layer of PLAF deploys, creates, starts, and stops the microservices running in a
container or whole container. We built IoT microservices as a series of separately built, modified,
and escalated microservices with autonomous log collecting bots. That microservice is used as an
individual container and CPU, bandwidth, RAM, and storage specifications are specified as a resource
necessity for each microservice.

The other application of DSMM provides autonomous log collection via automated C&C bots
other than the microservice orchestration. The principal purpose of placing automated bots besides
the microservice is that the first layer of PLAF is capable of autonomously capturing the logs in a
container environment. To collect the logs autonomously in such a way that the intervention of an
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outsider is avoided, the automated bots are deployed in the respective IoT device container running at
fog worker node. These bots are the inspiration of malicious bots that works on the phenomenon of
C&C (command and control) to collect desired information automatically. These automated bots are
the automated command and control Python scripts, which collects the microservices application logs
of the corresponding container in which they are running.

DSMM deploys the C&C bots besides the microservice in the container of edge device running
on the fog worker node. To collect the log from IoT microservice, bots gather the stored logs in
a specific directory provided on edge device microservice application. Logs are kept in storage in
a predefined format along with the service information for forensics. Equation (1) provides the digest
of information format harvested in the microservice of the edge device. These bots are assigned with
nonce identifiers so that the corresponding logs must be identified separately. This will also be useful
in making information digest during the log preservation chain. Figure 10 provides the inside view of
bots working in containers along with microservices.

In f ormationDigest = Edge_node_IP + Bot_ID + Timestamp + Microservice_IP (1)

Figure 10. C&C bots running inside container.

4.2. Log Preservation Layer (Layer Two)

The importance of preserving digital information is to make sure that none of the malicious
entity can perform modification and tempering to digital assets generated by layer one. In this layer,
the aforementioned objective is achieved by preserving the integrity of logs and generating secure PPLs
that builds resistance to tempering and provides log verifiability as well. This layer provides crucial
safeguarding mechanisms to ensure log integrity, temper resistance, log verifiability, and provenance.

To ensure all the aforesaid security requirements, the proposed architecture PLAF provides
a holistic solution that is secure and scalable at once which can easily be executed on a fog node
even comprises of a Raspberry-Pi. In layer two, the Data Preservation Module (DPM) is deployed on
a fog node controller to perform log preservation via Holochain for secure, scalable, and robust logs
preservation. DPM runs beside the CMM and DSM at fog node controller as shown in Figure 9. In layer
two, DPM sends the request to fog worker nodes and receives the responses from them. These worker
nodes run the instances of Holochain nodes. These Holochain nodes manage the DHTs of log metadata.
Following the details about fog worker and controller nodes executing the DPM, module procedures
are given.

4.2.1. Data Preservation Module (DPM)

This module governs log data preservation to ensure log integrity, privacy, and peer-to-peer
data sharing via Holochain. Holochain used for secure and scalable log preservation schemes which
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establish the peer-to-peer network communication of all Holochain nodes distributed among fog
worker nodes. The following sections describe the Holochain technology and different operations
executed by Holochain at fog worker node [54,55].

4.2.2. Holochain

Holochain offers an agent-centric and relativistic environment to create the underlying validity
of data. Holochain guarantees data integrity for distributed applications by carefully collecting data
from the local immutable chain of each fog node. This effectively allows for an update to conventional
double accounting with the use of cryptographic signatures as accounts are linked to unchanging
chains. Each node manages its local transaction chain in this double-entry accounting system instead
of a global coins leader as in Blockchain.

Holochain does not waste computing power as it is wasted in Blockchain because it is not
dependent on some kind of global leader consensus. Moreover, Holochain is not dependent on the
references to the proof-of-work, the proof-of-stake, or leading selection algorithms to ensure the data
integrity for peer-to-peer applications.

This means that each balance of a fog worker node is stored on its chain, and when two fog
worker nodes are transacted, they only have to test the background of their counter-party to make sure
that they have credits. Third-party authorization or consensus is not needed in this case. Figure 11
illustrates the peer-to-peer validation mechanism of Holochain for privacy preservation in distributed
fog worker nodes.

Figure 11. Log preservation in Holochain.

4.2.3. Creating Log Chains as Proof of Past Logs

The fog worker node receives the edge nodes logs from automated bots and builds the log info
digest. Log info digest comprises of some attributes which are log_file_ID, bot_ID, container_IP,
and timestamp. These log info digests being stored at local storage of respective fog worker node along
with their private keys and peer node log chain ID. Finally, all of the fog nodes stores their respective
encrypted local log chains. Figure 12 illustrates the procedure of the digest building of local log chains.
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Figure 12. Preserving proof via log chaining.

4.2.4. Distributed Hash Tables (DHTs)

Fog worker logs the local backup of log info digest and then exchanges its local log chain to the
peer network fog worker node. In DHTs, a single key that will be “IP:Port” of that node with the
SHA-1 algorithm will be allocated to each node. A node may construct a DHT ring and other nodes
may join the ring through the IP:Port of this node. When a node enters or joins a ring, some threads
are created to ensure correct entries in a finger table. The successor and predecessor fog nodes share
and acknowledge the local log chain of each other. There is a list of successors with “R” entries in each
node. This list is used when a successor node leaves the ring, and the next node in the successor list
will automatically be assigned as the successor to it. A growing node periodically asks the successor
and predecessor to remember that they remained in the ring. If no acknowledgment is earned, the ring
is left and stabilization is carried out accordingly. Every node maintains a map to store pairs of the key
values. When a key is accessed, a single ID is often allocated and stored in a node whose ID is only
greater than the ID of that key. If a node again leaves the ring, it gets all the keys from its successor.

4.2.5. Log Archiving Layer (Layer Three)

In this layer, all of the collected logs are securely stored at CLS. This layer affects the session
authentication when log retrieval is requested and secure storage of logs as well. The aforementioned
operations are executed under the Secure Data Archiving Module (SDAM). These stored logs can
be used for testimonial in the court of law, in the recreation of footprints and for threat intelligence
analytics. SDAM performs two following operations of log securing and secure session establishment.

Under the considered system model and security requirements for secure and incremental log
storage, our goal is to propose a security and privacy-aware storage scheme based on homomorphic
encryption in the cloud. The cloud storage is susceptible to side-channel attacks, fake information
injection attacks, and data forgery attacks. To prohibit previously mentioned threats in the multi-tenant
and black-box nature of the cloud, we used a Partial homomorphic encryption mechanism based
Paillier Homomorphic Encryption (PHE) scheme for privacy and security of logs. The purpose of using
PHE is to attain the privacy and security of logs in cloud storage while the continuous updates of logs
from the fog node controller. PHE is fast and provides additive operations upon logs file increment in
cloud storage and also provides semantics security [56].

The public and private keys of CLS are directly stored in the premises of the law enforcement
agencies to avoid any kind of conspiracy. There are three main steps involved in this scheme namely
Key generation, Encryption, and Decryption. The underlying steps in each of these steps are explained
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as follows; in the key generation step, the public (encryption) and private (decryption) are generated
and stored; in step two, the computation performs on encrypted data, in step three, decryption of
both plain text is performed via private keys, this phase is only done at the agent’s machine. Figure 13
provides a simple explanation of PHE working in the context of log storage. The benefit of using PHE
is that, even if the attacker intercepts the communication between layer two and layer three, she cannot
obtain the sensitive information belongs to logs.

Whenever the investigating entity makes requests to fetch and validate the integrity logs from
CLS, a secure session is initiated amid entity, cloud, and fog node controller. These sessions are
authenticated by SSL (Secure Socket Layer) using curve25519 as a cryptographic protocol for mutual
authentication. The SSL with curve25519 cryptographic protocol offers better security with faster
performance compared to RSA, it is compact, and uses only 68 characters compared to RSA 3072
that has 544 characters. RSA is the most widely used public-key algorithm for SSH keys. However,
compared to curve25519, it is slower and even considered not safe if it is generated with the key
smaller than 2048-bit length [57].

Figure 13. Paillier Homomorphic Encryption (PHE) mechanism in cloud CLS.

The well-thought-out mutual authentication mechanism executes by SDAM in the following steps;
the first session of authentication is established among investigators and CLS. When the investigator
is verified as a legitimate entity at the CLS verification point, it will be able to request the PPL from
the fog node controller via the same authentication scheme used at the cloud level. After this phase
of entity authentication, the CLS regenerates the tokens and certificates specifically for the fog node
controller. This mutual entity public-key authentication process is presented in Figure 13. In two-way
SSL authentication, the SSL client (agent) verifies the identity of the SSL server (CLS), and the SSL
server (CLS) verifies the identity of the SSL client (agent). The mutual authentication scheme provides
in Figure 14 works in subsequent steps;

1. SSL client (agent) sends a secure connection request to CLS
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2. CLS reply with its certificate (CA) and request for agent certificate (CB)
3. Agent verifies the certificate (CA)
4. Key exchange from SSL client (agent) side
5. Agent sends its certificate (CB) signed by its private key
6. CLS receives and verifies the certificate (CB) from public keys of agent
7. Exchange of cipher specs at both SSL client and server-side and fog node controller
8. Secure session initiated.

After the session begins to initiate, the agent gets the encrypted logs and decrypted them on its
machine. Here, the third phase of PHE occurs and log validation as well.

Figure 14. SSL mutual authentication amid agent, cloud and fog node controller.

5. Performance Evaluation and Security Analysis

This section explains the implementation details, performance evaluation, and security analysis of
PLAF. The performance analysis is performed based on stress testing and log preservation processing
analysis. In security analysis, the formal log integrity verification and validation are performed.
In addition, the comparison of PLAF with existing literature is provided.

5.1. Implementation

To implement a prototype environment, the technical PLAF specifications for the host machine
are Ubuntu 20.04 LTS system with 16 GB RAM, and a Core i7 Processor. We used the OpenStack cloud
platform to host a fog node controller and the Docker swarm management console is used to orchestrate
IoT services in fog node; C&C scripts are written in Python to fetch and collect the logs automatically.
For the verification of the log hash chain based scheme, Holochain rust API is implemented to create
the PPL. To achieve the confidentiality of data, we used PHE for encryption. The authentication of the
user is achieved through SSL with curve25519 for mutual entity authentication. The real-time testbed
is implemented using IoT devices, the OpenStack cloud platform, and a Raspberry Pi. This testbed is
cross-verified from the given threat model and also the simulation results are compared with existing
literature. In the following steps, the testbed is described.

Step 1: Layer one is implemented in this phase where different logs of IoT environment are
generated and collected. We used different IoT devices such as IP cameras, fingerprint scanners,
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and Wi-Fi enabled devices to get the logs. In the second phase of layer one simulation, the orchestration
of IoT device node microservices was performed via the Docker swarm platform for continuous
integration and privacy-preserving automation. In the Docker swarm environment, different
containers are deployed to orchestrate microservices of IoT devices. For continuous and autonomous
log collection, the C&C bots application was deployed in the container of each microservice.
These automated bots are actually the Python script which uses the C&C mechanism to get the
logs continuously. Each bot has a unique ID which is allotted via a nonce key so no malicious bot can
access the container.

Step 2: Layer two which is a log proof preservation layer has been instigated in step two of
implementation. This step is performed at fog node layer PLAF. We used a Raspberry Pi as a fog
node because our adopted preservation scheme can easily run on less resource fog nodes. We used
Holochain container-API written in rust for log preservation in different fog nodes. We used the
OpenStack cloud platform to simulate the fog node controller which governs the phenomenon of
Docker swarm management, fog node monitoring, and DHTs management of different fog nodes.
In fog node controller, monitoring of the following modules was implemented; DSMM for microservice
orchestration, OpenIoTFog agent (CMM) to monitor the health of IoT devices, data preservation
module to effect Holochain mechanism and secure migration of log from fog to cloud.

Step 3: Secure log archiving is deployed in dedicated cloud log storage and is created in the
cloud platform. We used Paillier Homomorphic Encryption to secure the log storage and private
keys are directly stored in the respective monitoring agent server. SSL with curve25519 for mutual
authentication is used for entity authentication when the session is established at CLS and fog node.

5.2. Performance Analysis

This section provides the evaluation of securing logs in PLAF. Fast data processing and data
integrity checking are critical because it aims to collect log data in fog enabled cloud environments.
Furthermore, the minimal computational power and overhead at fog node have to be calculated
during log preservation. The efficiency is measured using four success metrics: fog node automation
processing, stress testing of bot running in container besides microservices, privacy preservation
processing, and log validation analysis.

5.2.1. Use Case

We built a testbed workload of IoT scenarios to evaluate the efficiency of PLAF. The testbed is
modeled on the IoT application environment based on microservices which automatically collects data
and sends it to the fog node. There are situations in which a fog node has to be attached physically to
the computers. Applications also require access to other resources than CPU, memory, and storage,
and serial ports. When requirements for containers are created by DSMM, together the DSMM and
CMM ensure that the required resource container is available. When an IoT device connects to the
PLAF environment, the requested IoT microservices are placed in the container as shown in Figure 15.
The containerized program will also be designed for that particular fog node. The DSMM must facilitate
this form of container positioning and CMM must be conscious of the robustness of the device.

Figure 15. Placement of microservice IoT device.
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5.2.2. Fog Level Privacy Automation Processing and Testing

A resource-constrained computer such as a Raspberry Pi is used as a fog node. The DSMM
must be able to automatically identify and connect the fog node to the cluster, and only the required
program packages are included in this node. In terms of latency and network utilization of the device
after deployment, we have tested our scenario with microservices utilizing the autonomous bots and
contrasted it with a cloud-based application. The placement methodology is tested based on the time
required in the placement of microservices in the fog layer and the cloud. The details are presented in
Figure 16.

Figure 16. Microservice placement delay in the fog and cloud environment.

5.2.3. Stress Testing of Bots and Containers

The proposed architecture PLAF aims to automate the deployment of the bots in the fog
environment which is composed of heterogeneous fog nodes with fewer resources. Therefore, the log
harvesting mechanism of PLAF has been evaluated using two scenarios. Scenario 1: In the first
scenario, the ZigBee devices were launched with bot application directly running on the host operating
system, The time required to reach the ZigBee application is evaluated.

Scenario 2: In the second scenario, we did the calculations in a Docker container while executing
the isolated bot program. Finally, in the containers, all gateways and bot applications were running
together. The cycle has been replicated twenty times. Docker Containers have observed an overall
overhead of about 0.039 sec. The confidence interval for both the scenarios is 95.7%.

The statistics provided in Table 4 demonstrate the outcomes of observations of two scenarios.
We used a stress testing method for Linux where -c, -m, -io are all CPU, memory, I/O workload
generator. Note that this lag is only noticed when the device is first accessed. The more stress exerted
on the PLAF in the simulations, the more time it takes to launch the (Xbee) program. It was observed
that, initially, the latency in usage is milliseconds of stress tests. This interruption takes place only
once before the program begins and does not create additional overhead in this situation of the
Docker container.

In our experiments, we have increased and decreased the number of sensors in the fog layer to
evaluate the performance. We also experimented with the deployment of more edge devices attached
to each fog node and additionally allocated a few more resources. Table 5 specifies the criteria of
simulation for a minimal period to start a container and microservices in the architecture of PLAF.
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Figures 17 and 18 provide the delay computed after increasing the number of IoT devices and the
placement of microservices in them.

Table 4. Communication delay with bots in container with respect to stress parameters.

Scenario 1: Placement of Bots application without container

Device Configuration Average Time (sec) Confidence Interval (95%)

Gateway APP in container 0.064144 0.066 < x < 0.069
Bot + APP in container 0.09100 0.091 < x < 0.099

Scenario 2: Placement of Bots application with container

Bot in container stress (-c) 0.0789271 0.088 < x < 0.089
Bot in container stress (-m) 0.0896683 0.081 < x < 0.093
Bot in container stress (-io) 0.0995469 0.066 < x < 0.096

Table 5. Simulation Parameters.

Parameter Value

IoT device to fog level (one device) 6.5 ms
IoT device to fog level (four device) 22 ms
IoT device to fog level (eight device) 33.2 ms
Container startup time 199 ms
Placement of Microservice in fog node 2 ms

Figure 17. Time taken to place microservice in fog node with four devices.
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Figure 18. Time taken to place microservice in fog node with eight devices.

5.2.4. Log Preservation Processing Analysis

As previously described, the proposed architecture PLAF applies a Holochain mechanism for
the preservation of logs at distributed fog nodes. We compare the PPL preservation performance in
terms of CPU resources for the RSA, Blockchain, and Holochain. We used 10, 100, and 1000 KB of the
log files with 200 log entries each. The log preservation duration in fog node is shown in Figure 19,
which describes that the log protection using Holochain was found to be better than the blockchain
and RSA encryption.

Figure 19. Log preservation performance in RSA, Blockchain, and Holochain.

5.2.5. Secure Log Storage Processing Analyses

PLAF stores the actual log data at the third layer of architecture via PHE (Paillier Homomorphic
Encryption) and provides the secure session establishment for log retrieval as well. We have analyzed
the privacy-aware secure log storage at CLS and the time taken to perform the incremental addition.
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The analysis of average time execution for PHE to execute incrementally is illustrated in Figure 20.
Time taken to perform mutual authentication via SSL certificates using curve25519 is also shown in
Figure 20.

Figure 20. Secure log storage processing session establishment analyses.

5.2.6. Performance Validation of PPL Processing

Only the data created by geo-distributed sensors in cloud location is sent to a central cloud that
is multi-hops from the edge of the network, Because all data produced are submitted to the cloud,
the number of data streams through the central network arises, significantly increasing the network
jamming. Due to these reasons, proof of past logs fetching services deployed in the cloud is recovered
and validated considerably late. In addition, data size increases when encrypting and decrypting
the data. Encrypting cloud logs is approximately three times expensive and larger files take more
storage and time to validate them. In PLAF, the size of the log data during validation is not increased
during the performance testing of the validation processing. Figure 21 provides the time consumed to
validate the PPL in two scenarios: (i); fetching and validating the PPL from fog node; (ii) fetching and
validating the PPL directly from the cloud.

Figure 21. PPL validation processing performance among fog and cloud.
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5.2.7. Computing Resource Allocation Trade-Offs

This work proposes a new log preservation architecture named PLAF offering many security
aspects for log preservation in an automated manner. On the other hand, it also affects some
computational trade-offs in terms of CPU and memory utilization. in this section, these trade-offs and
computational costs are presented and elaborated.

CPU Utilization: The CPU utilization during experimentation and simulations were compared.
The average CPU utilization for secure log storage using PHE and session establishment via SSL on
log size from 10-120KB log size is given in Figure 22. We can see that at the cloud layer the average
CPU utilization is approximately 40% of total CPU, which is an overhead. The CPU utilization at the
fog level has also been analyzed based on the usage of Docker containers and automated bots for log
collection. We have independently and separately analyzed the total CPU usage of Docker containers
in fog nodes which is shown in Figure 23. As the Bots are running continuously in containers, they thus
create an additional overhead in a container environment; in Figure 24, it is shown that the presence of
bots in containers seeks more CPU usage.

Memory Utilization: The memory utilization of docker container without bots is very low as
shown in Figure 25. As the data size increases after the deployment of bots, it requires more memory
allocation than containers. The memory allocation of containers and bots has separately analyzed and
described in Figure 26. The average memory utilization at the third layer of PLAF of log size up to
120 K shows that PHE and SSL both use memory with a minimum difference, which can be seen in
Figure 27.

Complexity of Using Docker Containers in OpenStack: We have demonstrated the CPU and
memory utilization of Docker containers and bots. Here, the resource usage terms of RAM of a docker
container in a fog node controller are presented, which is an OpenStack cloud virtual machine. To build
a fog node controller, we have used a virtual machine with the following specifications: Quad-core
processor, 32 GB RAM, and 75 GB of storage. To test the docker usage according to OpenStack VM
image specifications, we have executed two tests, which are resource complexity analysis on a large
Host and resource complexity analysis on a small host. Results of testing using a large Host (OpenStack)
shows that we can deploy a large number of containers, which means that a fog node controller must
be equipped with maximum resource allocation. This phenomenon is shown in Figure 28.

Figure 22. Average CPU utilization for secure log storage using PHE.
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Figure 23. CPU utilization of docker containers in fog nodes.

Figure 24. CPU utilization of autonomous bots in docker containers.
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Figure 25. Average memory utilization of docker containers.

Figure 26. Average memory utilization of docker containers in fog nodes.
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Figure 27. Average memory utilization of autonomous bots in docker containers.

Figure 28. Container usage in Large Host (OpenStack).

Conversely, the deployment of a small host (OpenStack) shows that the inverse results as
compared to a large host. We can conclude here that a docker container doesn’t use many resources
but is adaptable to host machine resources. The results of small host usage are shown in Figure 29.
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Figure 29. Container usage in Small Host (OpenStack).

5.3. Security Analysis

PLAF is designed for all the security attributes discussed previously and can address the issues
in the existing literature. We summarize the limitations in existing schemes and explain how PLAF
tackle these.

In the case of a typical cloud attack incident, an agent demands the CSP for a log database for
integrity-based validation as forensic evidence. If log validity is not checked, it cannot be accepted and
is not credibly acceptable as forensic evidence. However, PLAF guarantees log integrity, log verification,
provenance, trust admissibility, temper resistance, ownership non-repudiation, and privacy-preserving
automation using Holochain to check the log integrity over a distributed network of hash table at a fog
level. We have performed and analyzed the security comparison of PLAF with all the existing literature
techniques addressed in Section 2. From the analysis of literature, we have comprehended the essential
security requirements for privacy and security-aware log preservation. The scrutinized security
requirements were as follows; Ownership Non-Repudiation, Trust admissibility, the provenance of
PPL, Temper Resistance, Log Integrity, Log Verifiability, and Privacy-Preservation Automation.

PLAF acquires all the aforementioned security requirements and can defeat each aspect of the
threat model given in Section 3. A comprehensive comparison of PLAF with the existing literature is
provided in Table 6. The essential security requirements are placed in columns; therefore, we aimed
to comprehensively analyze the gains of PLAF with a lack of existing literature. The tick and cross
signs indicate the presence and absence of security requirements. The security comparison in Table 6
describes the novice contributions offered by PLAF that outperform with all other existing work.
In addition, Table 6 provides the security comparison in the context of essential scrutinized security
requirements for log preservation. It can be observed that PLAF provides the following distinctions
over existing techniques which are used for the securing of logs in the CLS, which is described in the
following points:
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Table 6. Security comparison PLAF with existing literature.

Scheme Ownership Non-Repudiation Trust Admissibility Provenance of PPL Temper Resistant Log Integrity Log Verifiability Privacy Preservation Automation

[29] 7 7 7 7 7 7 7

[30] 7 7 7 7 7 7 7

[33] 7 7 7 7 7 7 7

[31] 7 7 7 7 7 7 7

[32] 7 7 7 7 7 7 7

[34] 7 7 7 3 3 3 7

[35] 7 7 7 3 3 3 7

[36] 7 7 3 3 3 3 7

[37] 7 7 7 7 7 7 3

[38] 7 7 7 7 3 3 7

[39] 3 7 7 7 3 7 7

[40] 7 7 3 3 3 3 7

[41] 7 7 7 3 3 3 7

[42] 3 7 7 7 3 7 7

[43] 7 3 7 3 3 3 7

[44] 7 7 3 3 3 3 7

[45] 7 7 3 3 3 3 7

[46] 7 7 3 3 3 3 7

[47] 7 7 7 3 3 3 7

[48] 7 7 7 7 7 7 7

[24] 7 3 7 3 3 3 7

PLAF 3 3 3 3 3 3 3
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1. Independent autonomous forensic log collection framework assisted via automated bots.

Previous workers secure the log data through data encryption and deception methods but heavily
rely on their respective CSPs. PLAF incorporates the automation of edge node log collection,
which provides integrity and privacy management.

2. Logging scheme that incorporates the security of edge nodes logs into the account.

PLAF is formulated to hash the log chain and proof for log replication in such a way that log
modification could be supervised throughout the log verification process.

3. Preventing the log compromise due to collusion between the owner CSP, the customer,
and the investigators.

Because all CSPs have encrypted database and PPL data, there is no possible way to avoid or
check the involvement between owners, investigators, and CSPs with DB and the PPL records.
However, in PLAF, the log chains of all DHTs cannot be modified from distributed fog nodes
because it shares encrypted and distributed log chains with other network fog nodes.

5.3.1. Log Integrity Verification

In the case of an accident affecting classic cloud protection, a forensic authority first needs an
integrity-based report from CSP for the processing of technical evidence and the interpretation of
records. If the validity of the documents is not proven, they are not legitimately accurate and cannot
be regarded as forensic evidence. Moreover, PLAF preserves the log integrity with the hash function
of log chain digest and tests the accuracy logs using a distributed storage network of Holochain.

Fog nodes create log chain hash values Hashes of encrypted log chain (H(eLC)) to ensure the log
integrity. Figure 30 describes how to log data from cloud and fog nodes can be verified for integrity.
The investigators collect distributed log digest data and recover the log data using log chain validation
to verify the validity of the log data. As the cloud storage data recovered comprises of encrypted
log record (eLR)) and Hash of Log chain (H(eLR)), the collected (H(eLC)) data chain from fog node
is pondered to see whether they match (H(eLR)). The validity of integrity will be validated if both
information complements each other.

Figure 30. Log verification analysis.
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5.3.2. Log Chain Validation

To ensure the correct order of each log file, we used Precision Time Protocol (ptp) to sync the same
time. PLAF provides the accurate sync up time among fog nodes of log digest via PTP. The Precision
Time Protocol (PTP) implementation [58] has ensured synchronization between clocks from all fog
nodes. Furthermore, it should be noted that, before updating the log digest, the end-to-end time
synchronization is achieved. This method permits the timestamps to be shared with fog worker nodes
that can verify if the timestamp is altered or not. It also prohibits the tempered timestamp addition
and publication.

Log Validation algorithm (LVA) with time complexity is the timestamp sharing and comparison
method as described in Algorithm 1. Timestamp comparison is done to validate the correct order of log
files. The input variables are: TBI (timestamp block identifier), PathGTB1...n (Path identifier of groups
of all timestamp block), and MTID (Multi-timestamp path identifiers). LVA works on two phases,
which are timestamp generation and sharing, and timestamp blocks for comparison or validation.

Algorithm 1: Log Validation Algorithm (LVA)
Result: Timestamp Comparison
Input : Input : TBI, PathGTB1...n
Input : TBI (timestamp blocks Info)
Input : GTB (groups of timestamp block info)
Output : multiple timestamp comparison (MTID)

Input : timestamp generation and sharing
1 while fog node do
2 TID = (BotID+TBI+logfileID);
3 BTID = (TID|| PathGTB1...n);
4 send TID to Investigator;
5 end

Input : Timestamp Blocks for validation
6 while fog node do
7 MTID = (Ordering(TID1, TID2, ... , TIDXn) || (PathGTB 1...n)) ;
8 if MTID 1...n ← BTID then
9 log timestamps are SAFE ;

10 publish results;
11 else
12 information is tempered or manipulated;
13 publish results;
14 end
15 end

The first phase of LVA generates TID (timestamp identifiers) using Bot_ID, Timestamp, logfile_ID.
BTID (block of timestamps) used to publish these Timestamps to investigators. BTID is composed of
TID and PathGTB1...n of all identifiers.

Log validation and comparison is done in phase two of LVA. Here, the correct orderings of all
timestamp are compared to published BTIDs in a while loop. This phase provides information about
log validation by confirming the order of timestamps. If the order and given timestamp is equal to
timestamp under comparison, then it is declared as SAFE otherwise tempted:

T(n) = n(3 + 2) = 5n = O(N) (2)

S(n) = n(1 + 1) + n = 3n = O(N) (3)

We calculated the time and space complexity of both phases of LVA. The time complexity of phase
one and two is described as in Equation (2), which shows T(n) = each fog node(timestamp blocks
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generation) + (timestamp comparison). The space complexity of phase one and two is O(n) = each
edge node(timestamp blocks generation) + (timestamp comparison) as given in Equation (3).

6. Discussion

Investigating various logs such as process logs and network logs plays a vital role in computer
forensics. Collecting logs from a cloud is a challenging task due to the black-box nature and the
multi-tenant cloud models, which can impinge on consumer privacy when accumulating logs.
Moreover, the shifting paradigm of cloud computing toward fog computing brought new challenges
for digital forensics. Smart nodes are more susceptible to security threats and with less computing
resources, making this impossible to gather logs.

This work proposed a forensic aware logging architecture for security and privacy-aware log
autonomous log preservation in fog enabled cloud federations. We also considered the secured and
privacy concerned distributed edge node log collection by tackling the multi-stakeholder collusion
problem. To address the problem domain of PLAF, we also compared the security requirements with
the threat model and analyzed the required security controls. Based on scrutinized security controls,
we have designed the security requirements via Secure Tropos methodology.

PLAF offers the seven essential security requirements needed against some security threats
which are privacy violation, owner repudiation, log modification integrity theft, edge node tempering,
and computation overhead at edge level. The following are the addressed security requirements:
Ownership Non-Repudiation, Trust admissibility, provenance of PPL, Temper Resistance, Log Integrity,
Log Verifiability, and Privacy Preservation Automation. PLAF architecture is comprised of three
layers to mitigate the above-mentioned threats and affect the security requirements. The first layer
provides privacy preservation automation to avoid edge level threats. The second layer mitigates
the log integrity and privacy threats by implementing the Holochain distributed network that is not
acquainted with existing Blockchain technology, which is a power-consuming approach. Ownership
repudiation, privacy violation issues, and multi-stakeholder issues are dulled at the third layer of
PLAF via Paillier Homomorphic Encryption for secure storage and SSL with curve25519 mutual
authentication, respectively.

7. Conclusions and Future Directions

We have developed a testbed (PLAF Source Code—https://github.com/CanVel00/SALPAF)
to implement the aforementioned specifications and requirements of PLAF via incorporating many
state-of-the-art technologies at one place. We have analyzed PLAF in three dimensions, which are:
testbed performance, computation resource allocation, and security. The results obtained from our
experiments show a scalable and adaptable implementation of PLAF in terms of performance and
security. On the other hand, PLAF shows computation trade-off in terms of CPU and memory
utilization, especially for continuous log collection.

This paper presented new security and privacy-aware logging scheme in fog enabled clouds
for digital forensics. However, there were several limitations to this study. Thus, potential future
extensions may include advancing the operation of bots via machine learning techniques to detect the
rouge edge devices via log analyses at the fog level. Similarly, the Design and Implementation of a
real-world prototype of PLAF by incorporating the real-world scenarios and experimentation can be a
promising direction. This will not only ensure but also define the multiple log formats to cover the log
data of many services.
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Abbreviations

The following abbreviations are used in this manuscript:

Terms Descriptions
LR Log Record
eLR Encrypted Log Record
H(eLR) Hash of Encrypted Log Record
CLS Cloud Log Storage
CSP Cloud Service Provider
DSMM Docker Swarm Management Module
CMM Central Management Module
DPM Data Preservation Module
SDAM Secure Data Archiving Module
SSL Secure Socket layer
PHE Piallier Homomorphic Encryption
PPL Proof of Past Log
C&C Command and Control
PTP Precision Time Protocol
LVA Log Validaion Algorithm
DHTs Distributed Hash Tables
STM Secure Tropos Methodology
SecTro Tool Secure Tropos Tool
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