
US 20200389521A1
IN

((19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0389521 A1

Brock et al . (43) Pub . Date : Dec. 10 , 2020

Publication Classification (54) HOLOCHAIN - A FRAMEWORK FOR
DISTRIBUTED APPLICATIONS

(71) Applicant : Holo Limited , Gibraltar (GI)

(72) Inventors : Arthur Brock , Denver , CO (US) ;
David Braden , Broomfield , CO (US) ;
Jamison M. Day , Denver , CO (US)

(21) Appl . No .: 16 / 895,834

(51) Int . CI .
H04L 29/08 (2006.01)

(52) U.S. CI .
CPC H04L 67/1065 (2013.01) ; H04L 67/108

(2013.01) ; H04L 67/1076 (2013.01)
(57) ABSTRACT
This disclosure describes a system including nodes commu
nicating according to a relaxed , agent - centric distributed
hash table . The system includes a requesting node requesting
a value from a target node . The requesting node is associated
with a store radius and a query radius based on an agent
location of the requesting node . The store radius indicates
one or more peer nodes wherein the requesting node has
knowledge about the storage content of these peer nodes .
The query radius indicates one or more peer nodes wherein
the requesting node has connection with these peer nodes .

(22) Filed : Jun . 8 , 2020

Related U.S. Application Data
(60) Provisional application No. 62 / 858,910 , filed on Jun .

7 , 2019 .

900

905

START FROM
REQUESTING NODE

EXAMINE NODES IN
STORE RADIUS

915
IS THE VALUE
AVAILABLE ? Y

930
N

INQUIRE NODES IN
QUERY RADIUS

920

935

IS THE VALUE
AVAILABLE ?

RETURN THE
REQUESTED VALUE

940
N 925

SHIFT THE CENTER
TO THE NEW NODE

TERMINATE
DISCOVERY

J05 (16)

105 (1)

105 (2)

Patent Application Publication

105 (3) 105 (5)

Dec. 10 , 2020 Sheet 1 of 9

? ??? ??? ??? ? ???

105 (9)

US 2020/0389521 A1

FIG . 1

Patent Application Publication Dec. 10. 2020 Sheet 2 of 9 US 2020 / 0389521A1

?? ? ? 8 ?

PS FIG . 2

YA d
210

a 220

SOZ
25 200

300

0

Patent Application Publication

31000)

0

I

0

1

310 (2)

0

1

0

I

1

Dec. 10 , 2020 Sheet 3 of 9

3108
) 310 (3)

3051231
305 (0)

Osog

) €
305 (4)

(s) sos

305 (6)

305 (7)

100

OIO

100

101

110

111

US 2020/0389521 A1

FIG . 3

INPUT / OUTPUT DEVICES

Patent Application Publication

COMPUTER READABLE

PROCESSOR 412

MEMORY DEVICE 416

...

LOGICAL CONTAINER 4323 OPERATING ENVIRONMENT 4342_n

Dec. 10 , 2020 Sheet 4 of 9

TOIFROM NETWORK 405

US 2020/0389521 A1

FIG . 4

Patent Application Publication Dec. 10 , 2020 Sheet 5 of 9 US 2020/0389521 A1

SOURCE CHAIN

APPLICATION FIG . 5

505

SHARED DHT
OOS 515

Patent Application Publication Dec. 10 , 2020 Sheet 6 of 9 US 2020/0389521 A1

909

615

FIG . 6

620

Fields

OIS

Patent Application Publication Dec. 10 , 2020 Sheet 7 of 9 US 2020/0389521 A1

=
SII

30 735

720
740

(3) FIG.7

70 745
75

705 E

700
755 091

800

Agent Location

Patent Application Publication

865
Agent Storage Arc

815

stos 83ata ca Wita S 36 W30

845

870

820

805 855

840

Agent Query Arc zut tolerant verans of 3338 WG

835

860

830

Dec. 10 , 2020 Sheet 8 of 9

825

Page Storage SE

US 2020/0389521 A1

FIG . 8

Patent Application Publication Dec. 10 , 2020 Sheet 9 of 9 US 2020/0389521 A1

900

905

START FROM
REQUESTING NODE

EXAMINE NODES IN
STORE RADIUS

915
IS THE VALUE
AVAILABLE ? Y

930

INQUIRE NODES IN
QUERY RADIUS

920
935

THE VALUE
AVAILABLE ?

RETURN THE
REQUESTED VALUE

940 925

SHIFT THE CENTER
TO THE NEW NODE

TERMINATE
DISCOVERY

FIG . 9

US 2020/0389521 Al Dec. 10 , 2020
1

HOLOCHAIN - A FRAMEWORK FOR
DISTRIBUTED APPLICATIONS

CROSS - REFERENCES TO RELATED
APPLICATIONS

[0001] This application claims the benefit of and is entitled
to the priority date of provisional application 62 / 858,910 ,
entitled HOLOCHAIN — A FRAMEWORK FOR DIS
TRIBUTED APPLICATIONS , filed Jun . 7 , 2019 , and is
hereby incorporated in its entirety by reference .

TECHNICAL FIELD

[0002] The present disclosure relates generally to distrib
uted computing , and more particularly to a system for
finding and returning connections or content from one or
more nodes in a sparsely - connected multi - node computing
system where no single node has a comprehensive index of
nodes or content managed by those nodes .

BACKGROUND

[0003] While it is possible to design computing systems
that don't use state , many problems , particularly those that
are designed to reflect human interactions and the physical
world are easier to model when the computing system has
state .

[0004] Traditional software applications manage state by
storing all the memory in a single place , like a filesystem or
database . Just like our house or our bank account , these
systems only allow a single program to change what is
stored in the memory . This " single system ” state manage
ment is intuitive and still the most broadly used system for
managing computer system state . Even when programs were
developed using multiple threads , single systems usually
either delegate state management to a single thread , or they
use a method of handing off control between different
threads so that only one thread is “ in control ” of the state at
any given time .
[0005] The problem with state is that it represents a hidden
input to each of the functions that rely on it — and it may be
changed outside of our control . For example , we may think
that we have a certain amount of money in our bank account .
But if someone has stolen our passwords and taken money
out of our account , our record of how much money we have
in our account doesn't agree with the bank account’s record .
[0006] When we think about " real world ” state , we have
certain things that we try to control very carefully , like the
amount of money in our bank account or the location of our
things in our house . We have security systems that allow us
to make sure that the state of these protected assets doesn't
change without us knowing . In the case of our house , we
have locks that make sure that we are the only ones allowed
inside to move around our things . For things like our bank
account , we make sure that any transactions that change the
balance are approved by us .
[0007] Designing Computing Systems with State
[0008] While it is possible to design computing systems
that don't use state , many problems — particularly those that
are designed to reflect human interactions and the physical
world are easier to model when the computing system has
state .
[0009] Traditional software applications manage state by
storing all the memory in a single place , like a filesystem or
database . Just like our house or our bank account , these

systems only allow a single program to change what is
stored in the memory . This " single system ” state manage
ment is intuitive and still the most broadly used system for
managing computer system state . Even when programs were
developed using multiple threads , single systems usually
either delegate state management to a single thread , or they
use a method of handing off control between different
threads so that only one thread is “ in control ” of the state at
any given time .
[0010] Distributed Computing
[0011] The need to manage state is acute with distributed
computing systems . A distributed computing system is a
group of computing systems — frequently called nodes
which work together to maintain a unified or consistent view
of the state represented in the system as a whole .
[0012] Single system state management is not easily com
patible with distributed computing . As soon as multiple
programs need to interact with the stored state , all the
different programs need to be coordinated . In computing
terms , the different programs wanting to interact with the
system state are either “ readers ” (programs retrieving some
stored value from the memory) or “ writers ” (programs
adding to the memory or changing a stored value in the
memory) .
[0013] Distributed systems are a generalization of the
multi - reader and multi - writer threaded programs that work
on a single computing system . Logically , there is no reason
why readers or writers cannot be on separate physical nodes ,
communicating via messages . The various nodes cooperate
to maintain the shared system state .
[0014] Distributed systems usually have more resources
available to them than single systems . This can result in
higher performance or higher availability for distributed
systems . But there is a tradeoff : distributed systems are
subject to communication - based failures that can compro
mise the system . The CAP theorem states that it is impos
sible for a distributed data store to simultaneously provide
more than two out of the following three guarantees :

[0015] Consistency : Every read receives the most
recent write or an error .

[0016] Availability : Every request receives a (non - er
ror) response without the guarantee that it contains
the most recent write .

[0017] Partition tolerance : The system continues to
operate despite an arbitrary number of messages being
dropped (or delayed) by the network between nodes .

[0018] The job of a state coordination function is to
manage the tradeoffs within a distributed computing system .
These state coordination functions are used to achieve the
best possible consistency , availability , and partition toler
ance possible , while mitigating or reducing the number of
failures .
[0019] The job of a state coordination function is to
manage the tradeoffs within a distributed computing system .
These state coordination functions are used to achieve the
best possible consistency , availability , and partition toler
ance possible , while mitigating or reducing the number of
failures .
[0020) Representing State
[0021] Before discussing various state coordination func
tions , it is helpful to think about how state is stored . Within
a computing system , any sort of storage organization system
can be used to maintain state , including ordered / unordered
flat files , ISAM , heap files , hash buckets , B + trees , logs , and

US 2020/0389521 A1 Dec. 10 , 2020
2

log - structured merge trees . A state storage engine may also
have many layers , each operating under different principles .
Careful attention to how the state is stored and manipulated ,
however , makes it easier to make guarantees about the
correctness of the data .
[0022] Different types of state storage may be mutable or
immutable . A mutable storage can have its records modified .
An immutable storage can only add information to the
storage ; previously written information cannot be changed .
[0023] Many common mutable data storage engines use a
relational structure . A relational database organizes data into
one or more tables (or “ relations ”) of columns and rows ,
with a unique key identifying each row . The data can be
“ normalized ” to ensure that each piece of information is
stored in exactly one place . In a normalized relational
database , all changes to the stored state can be expressed in
terms of an ordered set of create , read , update , and delete
statements , each acting on a specified domain and range
within each relation . An ordered set of these state - modifying
statements , applied together , is referred to as a transaction .
If the transaction applies completely , or not at all , then the
transaction is atomic .
[0024] Relational databases are flexible , supporting ad
hoc querying and updates to the stored data . But the strict
data typing and referential controls necessary to support
such flexibility also make relational databases hard to effec
tively scale up to respond to many readers and writers . If
there is only one place where a particular piece of data is
stored , then access to a particular piece of information may
be a bottleneck , reducing availability .
[0025] Some databases address this issue by denormaliz
ing (storing the data in more than one place) or using
alternative , non - relational data structures . These databases ,
sometimes called “ NoSQL databases , " relax the data type ,
data organization , or referential controls commonly found in
relational databases in order to achieve better availability ,
partition tolerance , or performance , at the cost of reduced
consistency . These NoSQL data storage engines are also
examples of mutable data stores .
[0026] Alternatively , a data storage engine can have
immutable storage . For example , one type of immutable
storage engine uses a log - structured storage engine . A log is
an append - only , ordered sequence of records ordered by
time . Changes to the system state are recorded as atomic
changes in the log . At any time , the system state is defined
by the ordered set of changes recorded in the log . If two
nodes have the same contents in their state logs , then their
states are consistent .
[0027] One alternative to totally - ordered log - based state
storage is the use of additive data structures such as conflict
free replicated data types (CRDTs) . CRDTs are data types
that can be applied in any order by different nodes , and the
end result will be consistent . This means that CRDT - based
state storage has high availability and high partition toler
ance , but low immediate consistency . CRDTs provide strong
eventual consistency , so long as the disparities between
different data stores can be tolerated during the period when
replicas may be inconsistent . All nodes that have “ merged ”
all the data structure changes , regardless of the order in
which the changes are presented , are guaranteed to be in a
consistent state .
[0028] Hash Chains
[0029] One important type of immutable storage is a hash
chain or hash tree (sometimes called " blockchains ” or

“ Merkle trees , ” respectively) . Hash chains are data struc
tures in which each record contains both information to be
stored , one or more update rules , and a secure cryptographic
hash of the immediately preceding record . Because each
record includes the preceding hash , recursively to the start of
the data structure , anyone receiving a copy of the data
structure can independently verify the integrity of the entire
record by applying the update rules to the stored data and
calculating the appropriate hashes . This makes a hash chain
or hash tree effectively immutable , even if it stored in a
mutable storage , because any changes to the data invalidate
the cryptographic hashes embedded in the chain .
[0030] State Coordination Functions
[0031] State coordination functions can generally be cat
egorized as one of two types— either centralized or decen
tralized . Decentralized state management can further be
divided into distributed state storage and distributed state
management .
[0032] Distributed Systems , Centralized State
[0033] Systems with centralized state management have a
designated center point by which and through which deci
sions for the entire system are made . To allow multiple
independent programs to change the contents of the memory ,
there are protocols that ensure that each writer is authorized
to make its changes and that the changes are made in a
careful way that prevents conflicts and makes sure that all
the readers see a consistent picture . Common state update
protocols include two phase commit and three phase com
mit , both of which are frequently used in databases .
[0034] But these protocols are used to coordinate multiple
programs interacting with the stored state but the state is
still primarily maintained in one place . The nodes might be
distributed , but the state is centralized . In terms of the CAP
theorem , distributed systems with centralized state manage
ment have high consistency and high partition tolerance , but
lower availability . The central management node can be a
bottleneck due to all state management needing to go
through that single node , and it is difficult for distributed
system to deal with the loss of the node which implements
the state management function .
[0035] Distributing State Storage
[0036] One response to the problem of centralized state is
to distribute the state across more than one node . In a
distributed state storage system , the state the memory — is
either sharded , replicated , or both .
[0037] Sharding
[0038] In a sharded system , parts of the system state are
stored on and managed by different nodes in the system . If
a process needs to either read or store a value in the shared
state , it first identifies a sharding key allows it to identify
which node is storing and managing that particular part of
the system state . The process then interacts with the node
managing that part of the system state to read or write the
value accordingly .
[0039] The advantage of a sharded system is that no single
node is responsible for updating or storing all of the state
associated with the system . This means that the load asso
ciated with state management can be spread out across the
distributed system . Further , if a single node goes down , then
only the fraction of the state managed by that node becomes
unavailable . In terms of the CAP theorem , a sharded system
is equivalent to a system with centralized state , but the
chance that availability will be compromised by the loss of

US 2020/0389521 A1 Dec. 10 , 2020
3

a node is 1 / n , where n is the number of different nodes
participating in the sharded state storage .
[0040) Replication
[0041] In a replicated system , some or all of the system
state is duplicated across one or more nodes . The state may
be completely duplicated , such for a database with a standby
node , or it may be partially replicated . Updates made on one
copy are communicated to the various replicas . These
updates are usually distributed using one or more of trans
actional replication , state machine replication , or virtual
synchrony .
[0042] Transactional replication refers to a model where
each update is equivalent to the serialized stream of changes
applied during that update . For example , a transaction log
can be used to implement transactional replication between
two nodes .
[0043] State machine replication is a process by which the
changes and the state of the system are jointly represented as
a closed set of changes that can be applied to each node .
Hash chains and CRDTs can be used to implement state
machine replication .
[0044] Virtual synchrony involves a group of processes
which collectively work in tandem to create a replicated
state . Not every node needs to participate ; smaller groups of
nodes are organized into process groups . Nodes join a group
and are provided with a checkpoint containing the current
state of the data replicated by group members . Nodes then
send multicasts to the group and see incoming multicasts in
the identical order . Membership changes are handled as a
special multicast that delivers a new “ membership view ” to
the nodes in the group .
[0045] Coordinating State Updates
[0046] Depending on the state management function ,
updates to the shared state may be performed on only one of
the copies , the “ master , " or on any copy . If updates can only
be made to the master copy , then the system has centralized
state with recovery to another node . If more than one node
can receive updates to the common system state , then some
type of distributed state management is required .
[0047] Some of the state replication methods identified
above can also be used to implement a distributed state
management function . In particular , state machine replica
tion assumes that the replicated process is a deterministic
finite automaton and that atomic broadcast of every event is
possible .
[0048] Consensus Algorithms
[0049] A distributed state management algorithm is also
known as a consensus algorithm . A consensus algorithm is
one that allows different nodes to agree on a particular value
in the shared state . Examples of applications of consensus
include whether to commit a transaction to a database ,
agreeing on the identity of a leader , state machine replica
tion , and whether to add a particular record to a hash chain .
Examples of well - known consensus algorithms include
Paxos and Raft .
[0050] Consensus algorithms are designed to be resilient
in the presence of network failures and changed messages .
In general , consensus algorithms have the following prop
erties :

[0051] Termination : Eventually , every correct process
decides some value .

[0052] Integrity : If all (or some specified number of)
correctly - operating participants propose the same value
V , then the outcome of the process must equal v .

[0053] Agreement : Every correct process must agree on
the same value .

[0054] To achieve this result , most consensus algorithms
take one of two approaches . In the first approach , there is a
deterministic process for electing one of the participating
nodes to be a " leader . ” The leader determines the correct
state value and communicates it to the other nodes . A
leader - based approach also includes rules for handling fail
ure of the leader node and network splits that result in
inconsistent leader elections .
[0055] A second approach for consensus algorithms uses
concurrent computation and comparison . In a concurrent
computation and comparison approach , each participating
node is able to compute and propose a new state value . If
some number of participating nodes agreeusually a major
ity — then the new state value is accepted as the correct
value .
[0056] Byzantine Fault Tolerance
[0057] Some consensus protocols are also designed to deal
with some number of faulty or malicious nodes participating
in the network . Protocols that are designed to be robust
against faulty or malicious nodes are said to have “ Byzan
tine Fault Tolerance , " named for the paper that introduced
the concept . Byzantine Fault Tolerant (BFT) systems either
include a number of message rounds between node partici
pants , verifying state information , or they are built upon
unforgeable message signatures , such as digital signatures .
[0058] Content and Node Addressing
[0059] One problem not discussed above is the problem of
addressing : when state values are being replicated , or con
sensus messages are being exchanged , each node needs to
know how to reach other nodes participating in the distrib
uted system .
[0060] The simplest way to handle addressing is for all
nodes to have a list of other participating nodes , or to have
a known “ name node ” that keeps track of the address
information for all participating nodes . This is a solution for
systems where the number of nodes is known , and where
nodes like the name node can be trusted . But if nodes cannot
necessarily be trusted , or if nodes are transient , a different
solution can be used : a distributed hash table , or DHT .
[0061] A hash table is a data structure that associates keys
to values . Values are stored in the data structure according to
a hash function that computes an index into a possible array
of storage buckets , which themselves provide the value . A
distributed hash table performs the same function across
more than one node . Any participating node can efficiently
retrieve the value associated with a given key . Responsibility
for maintaining the mapping from keys to values is distrib
uted among the nodes , in such a way that a change in the set
of participants causes a minimal amount of disruption . This
allows a DHT to scale to extremely large numbers of nodes
and to handle continual node arrivals , departures , and fail
ures . The particular hash function used is chosen minimize
changes in lookup values when the number of participants
changes . The four most popular approaches are rendezvous
hashing , consistent hashing , the content addressable net
work algorithm , and Kademlia distance . It is not always
necessary that all possible values be stored in the DHT ; in
some cases it may be enough to have a shared formula by
which a value can be calculated from a particular key .
[0062] For example , a Kademlia DHT works by specify
ing the structure of the network and the exchange of infor
mation through node lookups . Kademlia nodes communi

US 2020/0389521 A1 Dec. 10 , 2020
4

cate among themselves using User Datagram Protocol
(UDP) . A virtual or overlay network is formed by the
participant nodes . Each node is identified by a number or
node ID . The node ID serves not only as identification , but
the Kademlia algorithm uses the node ID to locate values .
When searching for some value , the algorithm takes the
associated key and explores the network in several steps .
Each step will find nodes that are closer to the key until the
contacted node returns the value or no more closer nodes are
found . When the closest nodes are found , they are returned
to the requester .
[0063] Existing Systems
[0064] The most well - known hash chain application is
“ Bitcoin , ” a hash chain - based cryptocurrency ledger . In the
context of the systems above , Bitcoin is a distributed system
with an immutable replicated state built on a hash chain .
Bitcoin uses a Byzantine Fault Tolerant consensus algorithm
to coordinate transactions .
[0065] Specifically , the bitcoin blockchain is a public
ledger that records bitcoin transactions between members of
the network . It is implemented as a chain of blocks , each
block containing a hash of the previous block up to the
genesis block of the chain . Network nodes can validate
transactions , add them to their copy of the ledger , and then
broadcast these ledger additions to other nodes . To achieve
independent verification of the chain of ownership each
network node stores its own copy of the blockchain .
[0066] A network of communicating nodes running bit
coin software maintains the blockchain by “ mining , ” that is ,
running a lottery - like process of determining a random hash
value that meets a set of acceptance rules . About every 10
minutes , when an acceptable hash value is found , a new
group of accepted transactions , called a block , is created ,
added to the blockchain , and quickly published to all nodes .
[0067] Sometimes separate blocks are produced concur
rently , creating a temporary fork . In addition to the immu
table history , participants in the blockchain have an algo
rithm for scoring different versions of the history so that the
history with the highest value can be selected over others .
Peers supporting the database have different versions of the
history from time to time . They keep only the highest
scoring version of the database known to them . Whenever a
peer receives a higher - scoring version (usually the old
version with a single new block added) they extend or
overwrite their own database and retransmit the improve
ment to their peers . There is never an absolute guarantee that
any particular entry will remain in the best version of the
history , but the shared concurrent computation rules award
a higher value to adding new blocks than replacing old
blocks . Therefore , the probability of an entry becoming
superseded decreases exponentially as more blocks are built
on top of it , eventually becoming very low .
[0068] Another type of distributed and decentralized sys
tem is used to manage source code control and updates . Two
similar systems are called Git and Mercurial . Git and Mer
curial are a distributed version - control system used to track
changes in source code for use in software development . The
files and changes to the files are organized as a Merkle tree ,
guaranteeing that the complete state of the version con
trolled files is consistent . In addition , each change has a
unique cryptographic address , allowing individual commits
to be selectively addressed .
[0069] Git and Mercurial each include a mutable index
(also called stage or cache) that caches information about the

working directory and the next revision to be committed ;
and an immutable , append - only object database . The object
database represents the accepted state of the system . The
object database contains four types of objects :

[0070] A blob object (binary large object) is the content
of a file . Blobs have no proper file name , time stamps ,
or other metadata . (A blob's name internally is a hash
of its content .)

[0071] A tree object is the equivalent of a directory . It
contains a list of file names , each with some type bits
and a reference to a blob or tree object that is that file ,
symbolic link , or directory's contents . These objects
are a snapshot of the source tree .

[0072] A commit object links tree objects together into
a history . It contains the name of a tree object (of the
top - level source directory) , a time stamp , a log mes
sage , and the names of zero or more parent commit
objects

[0073] A tag object is a container that contains a refer
ence to another object and can hold added metadata
related to another object .

[0074] When a developer commits a new revision , the
temporary information is added to the accepted state . Git and
Mercurial provide each developer a local copy of the entire
state , and provides a mechanism for exchanging commits
(state changes) between different repositories . There is no
universal addressing , but different repository signatures are
maintained as they are merged . Thus the entire distributed
source control mechanism can be seen as a distributed state
consensus mechanism with periodic reconciliation between
participating nodes .
[0075] Freenet is another decentralized and distributed
system used for censorship - resistant communication . It uses
a decentralized distributed data store to keep and deliver
information . Technically , it functions as content - addressed
system paired with a distributed hash table . Typically , a host
computer on the network runs the software that acts as a
node , and it connects to other hosts running that same
software to form a large distributed , variable - size network of
peer nodes . Some nodes are end user nodes , from which
documents are requested and presented to human users .
Other nodes serve only to route data . All nodes communicate
with each other identically , there are no dedicated “ clients ”
or “ servers ” . It is not possible for a node to rate another node
except by its capacity to insert and fetch data associated with
a key . Keys are hashes , and so nodes can check that the
document returned is correct by hashing it and checking the
digest against the key .
[0076] Content Addressing and Discovery
[0077] Returning to the concept of addressing , distributed
systems generally need a mechanism for discovery — that is ,
finding other nodes in the network based upon some criteria .
A number of existing technologies present different methods
of organizing clients so that they can be found without
resorting to a single central directory . These include Chord ,
Hypercubes , and Kademlia (discussed previously) .
[0078] 4.1 Chord
[0079] FIG . 1 shows an exemplary 16 - node chord network
100. In chord network 110 , as nodes 105 (1) - (16) come
online they distinguish their position within the ring based
on their identity . These nodes 105 (1) - (16) identify them
selves to the nodes immediately in front of and behind
themselves , and become a part of the ring chain . For
example , node 105 (2) identifies itself to 105 (3) (“ succes

US 2020/0389521 A1 Dec. 10 , 2020
5

different embodiments . To be concise , drawings may be used
to facilitate descriptions of exemplary embodiments , and not
all features of an actual implementation may be provided in
the drawings .
[0089] FIG . 1 shows an exemplary chord network .
[0090] FIG . 2 shows an exemplary HyperCube .
[0091] FIG . 3 shows an exemplary Kademlia network .
[0092] FIG . 4 shows an exemplary information processing
system .
[0093] FIG . 5 shows the basic architecture of an exem
plary holochain .
[0094] FIG . 6 shows the structure of an exemplary source
chain .
[0095] FIG . 7 shows the operation of an exemplary holo
chain application .
[0096] FIG . 8 shows an exemplary Holochain network
according to some embodiments .
[0097] FIG . 9 shows an exemplary discovery process in a
Holochain network according to some embodiments .

DETAILED DESCRIPTION

sor ”) and nodes 105 (1) (predecessor ”) — the nodes imme
diately in front of and behind node 105 (2) in a clockwise
direction , respectively . As nodes 105 (1) - (16) go offline , they
try to notify their connections , but in the case of failure , their
connections will notice the lack of connectivity and relink
themselves .
[0080] Discovery requires messaging the closest node in
the “ finger list ” , for example , the successor , then messaging
the closest node in their “ finger list ” and so on .
[0081] 4.2 HyperCube
[0082] FIG . 2 shows an exemplary 2 - level HyperCube
200. In level 2 , each node not only has sibling nodes but also
a parent node . For example , when node 205 comes online ,
it connects with three siblings and one parent : nodes 210 ,
215 , 220 and 225. In HyperCube , as nodes come online , they
simply take the next space in the tree structure . As nodes
leave , vacancies are created that can be filled by future
arriving nodes . In the dire case of too many nodes leaving ,
the existing nodes can reorganize .
[0083] Discovery is a fairly straight - forward navigation
question once the effectively randomly assigned position
identifier of a node are known .
[0084] 4.3 Kademlia
[0085] In Kademlia , nodes are organized into “ k - buckets ”
according to the binary digits of their identity . For example ,
the exemplary Kademlia network 300 includes 7 nodes
305 (1) - (7) , as shown by the dots at the bottom in FIG . 3 .
Assuming node 310 (6) (with index “ 110 ”) is the target node
to be searched for , the remaining nodes 305 (1-5) and 310 (7)
are peer nodes organized in 3 k - buckets 310 (1) - (3) , respec
tively , as shown by the larger circles . The " distance ” as
measured by the exclusive or (XOR) of two identities
determines the relative closeness of another node , and a
lopsided binary tree effectively means that references are
maintained to more nodes closer to the target identity than
those further away . For example , nodes 305 (1) - (3) in
k - bucket 310 (1) are the farthest nodes away from target node
305 (6) , while node 305 (7) in k - bucket 310 (3) is the nearest
node .
[0086] Discovery requires making a query to a node that
is known about as close to the target identity as possible
(based on the XOR “ distance ”) . That node should theoreti
cally have references to more nodes in that particular neigh
borhood and can get closer to the target identity . The
discovery repeats until the contacted node returns identity of
the target node (i.e. , the target node is being found) or no
more closer nodes are found .
[0087] As described above , values can be stored in a data
structure using a hash table . The hash table associates keys
to values . Given a key , the hash table computes a corre
sponding index according to a hash function that in turn
points to the value stored in an array . Locating a value in a
Kademlia network follows the same procedure by locating
the closest nodes to a key or index , and the search terminates
when a node has the requested value in its store and returns
this value .

[0098] This disclosure describes a distributed system
made up of a plurality of individual computing systems ,
each referred to as a “ node . ” Referring now to FIG . 4 ,
diagram 400 shows an information processing system 410
which may function as a node , coupled to a network 405 .
The network 405 could be any type of network , for example ,
wired network , wireless network , a private network , a public
network , a local area network (LAN) , a wide area network
(WAN) , a wide local area network (WLAN) , a combination
of the above , or the like . The network may also be a virtual
network , such as an overlay or underlay network . In some
embodiments , the network may operate on more than one
level such that connections between nodes are virtually
addressed or content addressed . An information processing
system is an electronic device capable of processing , execut
ing or otherwise handling information . Examples of infor
mation processing systems include a server computer , a
personal computer (e.g. , a desktop computer or a portable
computer such as , for example , a laptop computer) , a
handheld computer , and / or a variety of other information
handling systems known in the art . The information pro
cessing system 410 shown is representative of , one of , or a
portion of , the information processing systems described
above .
[0099] The information processing system 410 may
include any or all of the following : (a) a processor 412 for
executing and otherwise processing instructions , (b) one or
more network interfaces 414 (e.g. , circuitry) for communi
cating between the processor 412 and other devices , those
other devices possibly located across the network 405 ; (c) a
memory device 416 (e.g. , FLASH memory , a random access
memory (RAM) device or a read - only memory (ROM)
device for storing information (e.g. , instructions executed by
processor 412 and data operated upon by processor 412 in
response to such instructions)) . In some embodiments , the
information processing system 410 may also include a
separate computer - readable medium 418 operably coupled
to the processor 412 for storing information and instructions
as described further below .
[0100] In one embodiment , there is more than one network
interface 414 , so that the multiple network interfaces can be
used to separately route management , production , and other
traffic . In one exemplary embodiment , an information pro

BRIEF DESCRIPTION OF THE DRAWINGS

[0088] Various embodiments of the disclosed concepts are
illustrated by way of example and not by way of limitation
in the accompanying drawings in which like references
indicate similar elements . It should be noted that references
to " some ” embodiments in this disclosure mean at least one
embodiment and they are not necessarily the same or

US 2020/0389521 A1 Dec. 10 , 2020
6

cessing system has a “ management interface at 1 GB / s , a
" production ” interface at 10 GB / s , and may have additional
interfaces for channel bonding , high availability , or perfor
mance . An information processing device configured as a
processing or routing node may also have an additional
interface dedicated to public Internet traffic , and specific
circuitry or resources necessary to act as a VLAN trunk .
[0101] In some embodiments , the information processing
system 410 may include a plurality of input / output devices
420a - n which are operably coupled to the processor 412 , for
inputting or outputting information , such as a display device
420a , a print device 420b , or other electronic circuitry
420c - n for performing other operations of the information
processing system 410 known in the art .
[0102] With reference to the computer - readable media ,
including both memory device 416 and secondary computer
readable medium 418 , the computer - readable media and the
processor 412 are structurally and functionally interrelated
with one another as described below in further detail , and
information processing system of the illustrative embodi
ment is structurally and functionally interrelated with a
respective computer - readable medium similar to the manner
in which the processor 412 is structurally and functionally
interrelated with the computer - readable media 416 and 418 .
As discussed above , the computer - readable media may be
implemented using a hard disk drive , a memory device ,
and / or a variety of other computer - readable media known in
the art , and when including functional descriptive material ,
data structures are created that define structural and func
tional interrelationships between such data structures and the
computer - readable media (and other aspects of the system
400) . Such interrelationships permit the data structures '
functionality to be realized . For example , in one embodi
ment the processor 412 reads (e.g. , accesses or copies) such
functional descriptive material from the network interface
414 , the computer - readable media 418 onto the memory
device 416 of the information processing system 410 , and
the information processing system 410 (more particularly ,
the processor 412) performs its operations , as described
elsewhere herein , in response to such material stored in the
memory device of the information processing system 410. In
addition to reading such functional descriptive material from
the computer - readable medium 418 , the processor 412 is
capable of reading such functional descriptive material from
(or through) the network 405. In one embodiment , the
information processing system 410 includes at least one type
of computer - readable media that is non - transitory . For
explanatory purposes below , singular forms such as “ com
puter - readable medium , ” “ memory , " and " disk ” are used ,
but it is intended that these may refer to all or any portion
of the computer - readable media available in or to a particu
lar information processing system 410 , without limiting
them to a specific location or implementation .
[0103] The information processing system 410 may
include a container manager 430. The container manager is
a software or hardware construct that allows independent
operating environments to coexist on a single platform . In
one embodiment , the container manager is a hypervisor . In
another embodiment , the container manager is a software
isolation mechanism such as Linux cgroups , Solaris Zones ,
or similar . The container manager 430 may be implemented
in software , as a subsidiary information processing system ,
or in a tailored electrical circuit or as software instructions
to be used in conjunction with a processor to create a

hardware - software combination that implements the specific
functionality described herein . To the extent that software is
used to implement the hypervisor , it may include software
that is stored on a computer - readable medium , including the
computer - readable medium 418. The container manager
may be included logically “ below ” a host operating system ,
as a host itself , as part of a larger host operating system , or
as a program or process running “ above ” or “ on top of ” a
host operating system . Examples of container managers
include Xenserver , KVM , VMware , Microsoft's Hyper - V ,
and emulation programs such as QEMU , as well as software
isolation mechanisms such as jails , Solaris zones , and
Docker containers .

[0104] The container manager 430 includes the function
ality to add , remove , and modify a number of logical
containers 432a - n associated with the container manager .
Zero , one , or many of the logical containers 432a - n contain
associated operating environments 434a - n . The logical con
tainers 432a - n can implement various interfaces depending
upon the desired characteristics of the operating environ
ment . In one embodiment , a logical container 432 imple
ments a hardware - like interface , such that the associated
operating environment 434 appears to be running on or
within an information processing system such as the infor
mation processing system 410. For example , one embodi
ment of a logical container 434 could implement an interface
resembling an x86 , x86-64 , ARM , or other computer
instruction set with appropriate RAM , busses , disks , and
network devices . A corresponding operating environment
434 for this embodiment could be an operating system such
as Microsoft Windows , Linux , Linux - Android , or Mac OS
X. In another embodiment , a logical container 432 imple
ments an operating system - like interface , such that the
associated operating environment 434 appears to be running
on or within an operating system . For example one embodi
ment of this type of logical container 432 could appear to be
a Microsoft Windows , Linux , or Mac OS X operating
system . Another possible operating system includes an
Android operating system , which includes significant run
time functionality on top of a lower - level kernel . A corre
sponding operating environment 434 could enforce separa
tion between users and processes such that each process or
group of processes appeared to have sole access to the
resources of the operating system . In a third environment , a
logical container 432 implements a software - defined inter
face , such a language runtime or logical process that the
associated operating environment 434 can use to run and
interact with its environment . For example one embodiment
of this type of logical container 432 could appear to be a
Java , Dalvik , Lua , Python , or other language virtual
machine . A corresponding operating environment 434 would
use the built - in threading , processing , and code loading
capabilities to load and run code . Adding , removing , or
modifying a logical container 432 may or may not also
involve adding , removing , or modifying an associated oper
ating environment 434 .
[0105] In one or more embodiments , a logical container
has one or more network interfaces 436. The network
interfaces (NIS) 436 may be associated with a switch at
either the container manager or container level . The NI 236
logically couples the operating environment 434 to the
network , and allows the logical containers to send and
receive network traffic . In one embodiment , the physical

US 2020/0389521 A1 Dec. 10 , 2020
7

network interface card 414 is also coupled to one or more
logical containers through a switch .
[0106] In one or more embodiments , each logical con
tainer includes identification data for use naming , interact
ing , or referring to the logical container . This can include the
Media Access Control (MAC) address , the Internet Protocol
(IP) address , and one or more unambiguous names or
identifiers .
[0107] In one or more embodiments , a “ volume ” is a
detachable block storage device . In some embodiments , a
particular volume can only be attached to one instance at a
time , whereas in other embodiments a volume works like a
Storage Area Network (SAN) so that it can be concurrently
accessed by multiple devices . Volumes can be attached to
either a particular information processing device or a par
ticular virtual machine , so they are or appear to be local to
that machine . Further , a volume attached to one information
processing device or VM can be exported over the network
to share access with other instances using common file
sharing protocols . In other embodiments , there are areas of
storage declared to be “ local storage . ” Typically a local
storage volume will be storage from the information pro
cessing device shared with or exposed to one or more
operating environments on the information processing
device . Local storage is guaranteed to exist only for the
duration of the operating environment ; recreating the oper
ating environment may or may not remove or erase any local
storage associated with that operating environment .
[0108] In a distributed system involving multiple nodes ,
each node will be an information processing system 410 as
described above in FIG . 4. The information processing
systems in the distributed system are connected via a com
munication medium , typically implemented using a known
network protocol such as Ethernet , Fibre Channel , Infini
band , or IEEE 1394. The distributed system may also
include one or more network routing element , implemented
as hardware , as software running on hardware , or may be
implemented completely as software . In one implementa
tion , the network routing element is be implemented in a
logical container 432 using an operating environment 434 as
described above . In another embodiment , the network rout
ing element is implemented so that the distributed system
corresponds to a group of physically co - located information
processing systems , such as in a rack , row , or group of
physical machines .
[0109] The network routing element allows the informa
tion processing systems 410 , the logical containers 432 and
the operating environments 434 to be connected together in
a network topology . The illustrated tree topology is only one
possible topology ; the information processing systems and
operating environments can be logically arrayed in a ring , in
a star , in a graph , or in multiple logical arrangements through
the use of VLANs .
[0110] In one embodiment , one or more nodes acts as a
controller to administer the distributed system . The control
ler is used to store or provide identifying information
associated with the different addressable elements in the
distributed system specifically the cluster network router
(addressable as the network routing element) , each infor
mation processing system 410 , and with each information
processing system the associated logical containers 432 and
operating environments 434 .
[0111] In one embodiment , the distributed system includ
ing the components described above is organized as a

Holochain network . A Holochain network is a distributed
system with content - addressed nodes , where identities ,
nodes , and storage elements are all addressed by crypto
graphic hash values . Distributed applications run across
multiple nodes in the network and the Holochain network is
organized to provide a decentralized state coordination
function so as to protect the integrity and functionality of the
distributed , decentralized applications running on the net
work .
[0112] In a Holochain network , multiple individual hash
chains are used to coordinate state between the various
agents and the various nodes . Each hash chain is a ledger of
records organized in “ blocks . " Each block in the hashchain
may comprise a header and data (or " content ") wherein the
data may include information about a list of transactions , for
example . Each block may be identified by a key such as a
block hash , usually a unique number for each block gener
ated using a cryptographic hashing algorithm on the header
of the block . The header itself may have one or more fields
storing metadata . The metadata may include , for example ,
the block hash of the previous block (or “ parent block ”) , a
root , and a timestamp . The block hash of the parent block (or
" previous block hash ”) may again be generated using a
cryptographic hashing algorithm on the header of the parent
block . Because each block contains a previous block hash ,
the sequence of hashing linking each block to its parent
block creates a chain going back all the way to the first block
created (or “ genesis block ”) . The root in the metadata of
each block may provide a summary of the data in the block .
In this fashion , a hash chain is conceptually similar to a
Merkle tree , but one with a limited branching factor .
[0113] The above described layered relationships between
header , root and data , and between child and parent blocks
can ensure data integrity in a blockchain . For example , when
the data of a block is modified in any way , including changes
to the block metadata , the hash value of the block changes .
Because each subsequent block in a hash chain recursively
depends upon the values in previous blocks , any subsequent
blocks must also have their hash values updated or the chain
will be “ forked , ” with new values based on the new block
hash value . Thus , any change in any block , from the root up
to any intermediate block , will immediately be apparent
upon inspection
[0114] A Holochain network is designed as a framework to
tackle the above described challenges and provide data
integrity for distributed , decentralized applications . A Holo
chain application (i.e. , the application running on a Holo
chain platform or HApp) may comprise a network of nodes
(or " agents ”) , each maintaining a unique source chain of its
local data , paired with a shared space implemented as a
validating , monotonic , sharded , distributed hash table
(DHT) , where every node enforces validation rule (s) on data
in the shared DHT as well as confirms provenance of the
data according to an associated signature . Unlike prior art
hash chains , such as the blockchain associated with Bitcoin ,
which rely on global consensus around a single shared chain
encoding the entire state of the system , a Holochain network
includes a separate hash chain for each discrete HApp
(including each version of each HApp) . To coordinate state ,
individually interested nodes agree on a state modification
function and the hashable result of the coordination of the
two private shared states . The shared DHT space allows the
coordinating nodes to deterministically identify other nodes
that can record and verify the particulars of each state

US 2020/0389521 A1 Dec. 10 , 2020
8

update . These “ witness ” nodes are spread psuedorandomly
throughout the entire shared space , based upon a verifiable
calculation distributing the witness nodes throughout the
DHT using the hash of previous states as key inputs . Thus ,
only those who are interested in one particular set of
transactions maintain the entire chain of state , but interac
tions with the states of other chains are coordinated and
“ witnessed ” so that each chain of transactions can be vali
dated back to the root , while still only requiring each
participating node to share state with only a limited number
of nodes . By analogy , a Holochain network can be analo
gized to real - world state updates , and an individual state
update as a money transfer from A to B. Money can be
transferred with validations from only A , B and a bank (as
a “ witness ”) . It does not require consensus a global
agreement — from all the customers because they are not
engaged in the transaction at all .
[0115] By eliminating the reliance on a global ledger ,
Holochain provides a truly decentralized application plat
form with actual self - governance and mutual sovereignty .
On the other hand , by still using source chains to enforce
data integrity , a Holochain may function very much like a
blockchain without bottlenecks when it comes to enforcing
a validation rule , but may be designed to be fully distributed
through sharding so each node only needs to maintain one or
more portions of the shared DHT instead of a full copy of a
global ledger . This makes it feasible to run blockchain - like
applications on devices as lightweight as portable devices ,
such as mobile phones .
[0116] FIG . 5 shows a basic architecture of exemplary
Holochain 500. Holochain 500 may include three main
sub - systems — HApp 505 , source chain 510 , and shared
DHT 515. HApp 505 coordinates the system to present
consistent application functionality to a user or agent . HApp
505 may read and write local source chain 510 , and it may
also get data from and put authorized data onto shared DHT
515. HApp 505 includes validation rules for changing its
local hash chain . Holochain 500 also includes other nodes
connected to HApp 505 to provide independent system - level
validation for changes proposed to be entered by HApp 505 .
HApp 505 may be a computer application running on
Holochain 500. HApp 505 may be accessed , for instance ,
with a web browser for a user interface . Application 505
may be implemented using various programming tools , for
instance , JavaScript , Lisp , Python or Go .
[0117] In Holochain 500 , each node may have a local
private space , like a local repository , for storing data (or
" content ") . For example , in collaborative software develop
ment , the data may be one or more coding files . Each node
may be required to maintain an individual source chain 510 .
Source chain 510 may be achieved by a hash chain , like
blockchain . For example , source chain 510 may comprise
one or more blocks . Each block may be identified by a key ,
such as a block hash , usually a unique number for each block
which may be created by hashing the header of the block .
The header may include one or more fields storing metadata .
The metadata may include , for instance , a previous block
hash of the parent block , a root , and a timestamp . Like
blockchain , the sequence of hashing between the child and
parent creates a linked chain all the way back to the genesis
block . In the example of collaborative software develop
ment , each block may be associated with one version of
coding files . When HApp 505 carries out an action on the
files , for instance , a file addition , deletion or change of

content , a new version of the source chain is created .
Accordingly , a new block may be provided including a new
root which summarizes the action and new files . The action
and new files may be validated based on a local validation
rule before the new files are committed to the local reposi
tory and the new block is added to source chain 510. When
the node shares the data , the node may publish a concomi
tant source chain 510 with a signature , which may be
provided using a public - key encryption . Source chain 510
may be shared with a group of selected nodes selected using
the shared DHT as described below . Each selected node may
further add new block (s) to source chain 510 to capture their
subsequent , respective actions on the same data . For
example , node A may create software version 1.0 with a first
block in source chain 510. The first block may summarize
the data in version 1.0 with A's actions . Node A may add its
signature , perform a validation , commit the software to A's
local repository , and share the software with node B. Node
B may next take the software , develop it to version 2.0 , and
update source chain 510 with a second block . The second
block may summarize the data in version 2.0 with B's
actions . Node B may then add its signature , complete the
validation , commit the software to B's local repository , and
pass the software onto a next node . The described operations
may continue with the data sharing across Holochain 500 .
Along the process , source chain 510 may provide a verifi
able tamper - proof track of data , while the signature may
allow a verification of the data provenance .
[0118] FIG . 6 shows an exemplary structure of source
chain 510. In FIG . 6 , local source chain 510 may include
blocks 605-620 , wherein block 605 is the genesis block .
Each block 605-620 may include a header and data (not
shown in FIG . 6) . As described , the header of each block
605-620 may include one or more fields with metadata . For
example , block 605 may comprise header0 , which may
include one or more fields having metadata such as a
timestamp (indicating the time when block 605 is created) ,
an entry hash (e.g. , the root) , an entry type (e.g. , addition ,
deletion or modification of the data) , an entry signature (e.g. ,
the signature of the node creating block 605) , a previous
header (e.g. , the previous block hash) , a Holochain ID , and
the state modification rules applying to the HApp (the HApp
“ DNA ”) . Headero may be hashed to create a block hash or
an identifier of block 605 .
[0119] Similarly , block 610 may also include a header and
data (not shown in FIG . 6) . The header of block 610 may
further include metadata in one or more fields . The metadata
of block 610 may comprise a timestamp , an entry hash , an
entry type , an entry signature , and a previous header . In
particular , the entry hash of block 610 may include
key , which may be a hashed value of a data structure
including ID in this group context , public key and ID
descriptors . The foregoing process may repeat , for example ,
creating blocks 615 and 620 , for each individual action and
new data committed to the local repository .
[0120] Holochain is agent - centric because each node may
share data with other nodes autonomously as wished without
the need for a consensus from the entire system . To ensure
data integrity , each entry may need to be first verified locally
by the node — the source of data where it originates — and
next validated at the system - level by a set number of other
nodes identified through the shared DHT 515. The local
validation may be used to ensure the structural validity of the
local data . The local validation may be performed by each

user

US 2020/0389521 A1 Dec. 10 , 2020
9

entity proposing a state update . In the case of a coordinated
state update , like a transfer of information or credit from one
HApp instance to another , all participating coordinating
HApp instances all perform equivalent local validations
using the state update functions described in the HApp
“ DNA ” rules encoded into the application hash chain by
HApp 505. Each entity should reach an identical new state ,
as validated by comparisons of the hashed values of the
updated state and all previous hash chain state after applying
the state update function . In addition , one or more nodes
chosen from the DHT also follow the same update rule and
store the result . After the local validation , node A may add
its signature , and publish the new entry to shared DHT 515
by sharing the data and concomitant source chain 510 with
other nodes .
[0121] Shared DHT 515 is a monotonic ledger because
any entry added may no longer be deleted . Instead , it may
only be tagged with a " deleted ” marker , which does not
actually delete the entry but rather only allows it to be
ignored . Shared DHT 515 may further be considered to
reside at a “ public space ” because it is not located at the
private space of one specific node . Instead , shared DHT 515
may comprise all of the published source chains (as a
monotonic ledger) and be held collectively by all of the
nodes on Holochain 500. Unlike blockchain , each node may
need to carry only one or more portions (or shards) of shared
DHT 515 instead of a full copy of the entire ledger . In
contrast to prior art blockchain systems , no node and no
agent needs to hold all or even most of the ledger . In this
distributed manner , each node may be responsible to main
tain its own data and concomitant source chain 510 and be
ready to provide them to other nodes for confirmation , when
asked . In addition , all nodes may be responsible to share one
or more portions of one or more other nodes ' source chains .
For example , source chain 510 created by node A may be
distributed to one group of selected nodes on Holochain 500 .
Each selected node may retain a local copy of source chain
510. The selected nodes may be identified according to one
or more selection parameters . For example , the nodes may
be chosen according to their respective “ distances ” from
node A. The distances may be defined as the number of
hop (s) in routing a message from node A to a given node , for
example . Further , the nodes may be named based on their
uptime such that the total sum of uptime of all of the selected
nodes may exceed a resilience factor , which is determined
based on reliability and availability requirements of Holo
chain 500 or HApp 505. Note that this manner of selection
may result in the Holochain network adapting to changes in
topology and a shared DHT redistribution by regulating the
number of network - wide redundant copies of shared source
chains .
[0122] When node A pushes new entry to shared DHT
515 , a subset from the group of selected nodes may be
picked as validators to perform the system - level validation
of the new entry . The subset of nodes may be chosen
randomly to represent unbiased witnesses . With a successful
validation , the new entry may be accepted and allowed to
propagate . Otherwise , it may be rejected , and the node
initiating the invalid entry may be held accountable for the
fraud . The validation rule may be defined specifically for
each HApp 505. The validation rule may include , for
instance , business rules , application logic , restrictions , etc. ,
which may have different demands for strictness of different
applications . Further , the validation may change dynami

cally in response to the configuration or variation of the
applications . Each selected node may verify the entry shared
by node A based on node A's source chain 510 , confirm the
source of data based on A's signature , and validate the entry
with the system - level validation rule . When a selected node
completes all the checks successfully , it may mark the
received data valid and then add its own signature . The
selected node may further share the entry , like an initiating
node .
[0123] Holochain 500 may further provide a mechanism
for nodes to share information regarding those who have
broken validation rule (s) . The bad - acting nodes may be
punished , for example , by being excluded from participation
in HApp 505. In particular , nodes may use " gossip ” to share
information about their experience of the behavior of other
nodes . According to a gossip protocol , each node may
maintain a set of metrics about another node , including a
metric “ experience ” and a metric “ confidence ” of that expe
rience . The set of metrics may be established through direct
experiences with a given node or based on gossips from
other nodes . The set of metrics may be stored at each node's
own private space , and shared with other nodes directly as
needed . In addition , each node may keep a signed declara
tion (or “ warranty ') as for any of the set of metrics , such as
the metric experience or metric confidence . The warranty
may be maintained in a manner similar to that of source
chain 510. For example , when a node introduces a new
metric or alerts an existing metric , its action (s) on the metric
may be footprinted in the warranty . The warranty may
function as a tool for other nodes to make provenance - based
verifiable claims about a given node in the network . Those
claims may be gossiped from one node to another which
need to hear about the claims so as to make decisions about
interacting with the given node . A node may determine the
node to be gossiped with based on a measurement , for
instance , a probabilistic value weighing that information
from the given node may change the set of metrics of the
node to be gossiped with . A node may further use its set of
metric to determine a node to be gossiped about . In particu
lar , the metric confidence may impact the selection of nodes
to be gossiped with or about . A node with high confidence
may be one that has first - hand experience with a given
node's actions . This node may be allowed to gossip about
the given node more proactively , for example , by “ pushing "
a gossip about the given node to other nodes . Conversely , a
node with low confidence may be only allowed to gossip
passively through “ pulling ” —pulling information by other
nodes from this node . There may be various reasons why a
node has low confidence about a given node . For example ,
the node may have a unique relationship with a given node
to be gossiped about , for instance , the node relies on the
given node to route message . This unique relationship may
negatively affect the node's confidence with the given node
or discourage the node from gossip about the given node .
[0124] FIG . 7 shows the operation of an exemplary Holo
chain application . In FIG . 7 , a participant or node of HApp
505 - Alice may write a message (i.e. , data) for sharing
with other nodes of HApp 505 (block 705) . Alice may
cryptographically sign the message with a public - key
encryption (block 710) . The message , with Alice's signa
ture , may be saved (or committed) locally at Alice's private
space (block 715) . The data , such as the message , plus
Alice's signature , may be reserved into Alice's source chain
510 after local validation (block 720) . The message , with

US 2020/0389521 A1 Dec. 10 , 2020
10

features of an actual implementation are described in this
disclosure . Moreover , the language used in this disclosure
has been principally selected for readability and instruc
tional purposes and has not necessarily been selected to
delineate or circumscribe the full inventive scope of the
disclosed subject matter , which is defined by the appended
claims .

(0127] Agent Identity , Agent Location , Store Radius and
Query Radius

concomitant source chain 510 , may be shared by Alice with
a subset of selected nodes (block 725) . As described , the
nodes may be selected as validators according to one or
more parameters , for instance , their respective distances
from Alice , their uptime , and a resilience factor . In addition ,
the validators may be chosen randomly to represent unbi
ased witnesses . Each validator may check the validity of the
shared message (block 730) . For example , each validator
may retain a local copy of Alice's published source chain
510 and use it to validate the history of the message (e.g. , the
content of the message and editing by Alice) . In addition ,
each validator may confirm the provenance of the message
(e.g. , the message is initiated by Alice) according to Alice's
signature . Finally , each validator may validate that the
message meets the system - level validation rule as defined by
HApp 505. If any of the checks fails , the validator may reject
the message and mark it “ rejected ” (block 735) . Conversely ,
if the message passes the validation , a validator may accept
the message , mark it “ valid ” and add its own signature
(block_740) . The validator may take further actions as
needed by HApp 505 , for example , adding a link to the
message from Alice's profile (block 745) . In addition , the
validator may gossip its experience about Alice A with other
nodes (block 750) . As described , the gossip may involve the
communication of a set of metrics . Each node being gos
siped with may serve as a new validator to continuously
verify messages (block 755) , in the way as described above .
Note that once a validator adds its own signature , this
validator may be held accountable as well for an invalid
message . If the message breaches a validation rule (s) , the
message may be marked “ rejected ” and the node (s) sharing
the message may be held liable (block 760) . For example ,
nodes may gossip a warning about a bad - acting node , and
the bad - acting node may further be excluded from partici
pation in HApp 505 .
[0125] In the Holochain network described above , each
node is in communication with a subset of the other nodes
in the network , but as the number of nodes increases , it
becomes impractical for each node to be connected with all
or even a substantial portion of the available nodes . The
Holochain network may use a relaxed , agent - centric distrib
uted hash table (RRDHT) structure to organize the nodes as
well as perform discovery for a requested value . According
to some embodiments , each node in the Holochain network
may self - elect its own agent location , store radius and query
radius . A node requesting a value may first examine the
availability of the requested value in its store radius based on
its agent location , and then expend the inquiry into the query
radius , and so on . According to some embodiments , a node
may go through a bootstrapping phase for joining a new
Holochain network . The joining node may publish its agent
location , store radius and query radius until after it has
expand to a threshold number of nodes within the radius that
the joining node attempts to store or query . The threshold
number may be associated with a resilience factor . Accord
ing to some embodiments , the nodes in the Holochain
network may push data to a storing node or pull data from
another node through gossiping .
[0126] In the following description , for purposes of expla
nation , numerous specific details are set forth to provide a
thorough understanding of the disclosed concepts . As part of
this description , some of this disclosure's drawings repre
sent structures and devices in block diagram form to avoid
obscuring the disclosure . In the interest of clarity , not all

[0128] Relaxed , agent - centric distributed hash table
(RRDHT) aims at providing quick peer discovery during
content addressing in a Holochain network . In RRDHT ,
nodes may self - elect and publish separate “ store radius ” and
" query radius ” values based on an " agent loc ” or “ agent
location ” of the node . The agent locations may represent the
individual locations of the nodes in the Holochain net
work — the Holochain network may discover the nodes
based on their agent locations . The agent loc may be any
kind of objects , such as a number , a string , a symbol , etc.
According to some embodiments , the agent loc may be
determined based on an identity of the node (“ agent iden
tity ') . For example , the identity of the node may be asso
ciated with a public key , for instance a binary number , in a
cryptographic , digital signature of the human user associated
with the node . Alternatively , the identity of the node may be
an object associated with the content stored by the node . The
term " content " may represent any type of objects , such as a
number , a data , a symbol , a value , a piece of code , a
documentation , and so on . Furthermore , the identity of the
node may be a hash , for example , the hash of the public key ,
to provide further security . The agent loc of a node may be
determined based on the agent identity of the node . For
example , the agent loc may be an unsigned integer number
wrapped to a fixed range , for instance , between 0 and
4,294,967,295 (or FFFFFFFF in hexadecimal) . As shown by
the Python code below , given that the agent identity of a
node is a 32 - byte hash , for example , the agent loc of the node
may be derived by compressing the binary agent identity
into a 4 - byte number by applying an XOR operation to every
successive four bytes of the agent identity .

let hash = b “ fake hash fake hash fake hash ... " ;
let mut loc : [u8 ; 4] = [0 ; 4) ;
loc.clone_from_slice (& hash [0..4]) ;
for i in (4..32) .step_by (4) {

loc [0] ^ = hash [i] ;
loc [1] ^ = hash [i + 1] ;
loc [2] hash [i + 2] ;
loc [3] ^ = hash [i + 3] ;

}

[0129] Discovery in Holochain Network According to
RRDHT

[0130] Given a requested value , one primary goal of
RRDHT is for a random node to be able to find the
appropriate node that stores and accordingly retrieve the
requested value . This discovery process can be explained
with reference to FIG . 8. For ease of illustration , only 8
nodes (805 , 810 , 815 , 820 , 825 , 830 , 835 and 840) are
depicted in exemplary Holochain network 800. In this
specific example , because the agent locations of the nodes
are defined as integers wrapped to a fixed range , Holochain
network 800 may be represented by a ring . Moreover , nodes

US 2020/0389521 A1 Dec. 10 , 2020
11

805 , 810 , 815 , 820 , 825 , 830 , 835 and 840 may reside along
the ring with even or unequal distances from each other as
shown in FIG . 8 .

[0131] Node 805 (“ requesting node ”) may request a value
which is stored at node 825 (“ target node ”) . Initially , node
805 may not know that node 825 stores the requested value ,
nor does node 805 may know the address of node 825. In a
further extreme scenario , node 805 may never establish a
prior connection with node 825_node 805 may not know
node 825 exists in Holochain network 800 at all . The term
“ connection ” may indicate a networking communication in
any type of manner , for example , through a land telephone
network , a wired network , a wireless network , a mobile
network , a satellite network , or a combination of the above ,
etc.

may

[0132] The discovery of node 825 by node 805 may be
performed based on the store radius and query radius of node
805 as well as the agent locations of the nodes in Holochain
network 800. The store radius may correspond to a bucket of
peer nodes , within agent storage arc 865 , whose storage
content the requesting node may have knowledge about .
According to some embodiments , it may be preferential to
place the bucket of peer nodes close to the requesting node
thus reducing the hops in discovery . This may associate the
store radius with the agent locations of the nodes in the
Holochain network . For example , if the agent loc of a node
is 42 , a store radius of 2 may indicate a bucket of peer nodes
with agent locations in the range of 40-44 . Accordingly , a
store radius of zero may represent the node itself . Referring
to FIG . 8 , a store radius of 1 of node 805 may indicate a
bucket of peer nodes , such as node 810 and 840 , which may
reside within the distance of the store radius surrounding the
requesting node . Moreover , node 805 may have knowledge
about the storage content of nodes 810 and 840 within the
store radius .
[0133] Node 805 may also have a query radius . The query
radius may indicate a bucket of nodes (" a bucket of refer
ences ”) , within agent storage arc 870 , with which the
requesting node may have connections — the addresses of the
bucket of nodes in the query radius have been known to the
requesting node . Therefore , the query radius of a node may
always be equal to , or greater than , the store radius of the
node . Referring to FIG . 8 , the query radius of node 805 may
produce two references (besides nodes 810 and 840 in the
store radius) — nodes 815 and 835 — whose addresses may
have been known to node 805. Unlike nodes 810 and 840 in
the store radius , node 805 may not have information about
the content stored by nodes 815 and 835. Instead , node 805
may merely know the existence of nodes 815 and 835 exist
in Holochain network 800 and have their addresses . The
term " address " may refer to any type of addresses according
to a networking protocol , for example , point - to - point pro
tocol (PPP) , user datagram protocol (UDP) , transmission
control protocol / Internet protocol (TCP / IP) , etc.
[0134] Node 805 may perform the discovery as the fol
lowing to retrieve the requested value from node 825. First ,
node 805 may examine , as shown by arrows 845 and 850 ,
whether the requested value is available in its store radius
whether the requested value is stored at nodes 810 or
840 — because node 805 may already have knowledge about
the storage content of nodes 810 and 840. The examination
of nodes 810 and 840 may be carried out in order or in

parallel . If the requested value is available in the store
radius , the storing node may return the requested value , and
the discovery may terminate .
[0135] Conversely , if the requested value is not available
in the store radius , node 805 may further the discovery to the
bucket of nodes in the query radius , such as nodes 815 and
835. Because node 805 maintains the addresses indexing of
nodes 815 and 835 , node 805 may be able to communicate
with nodes 805 and 835 and inquire whether they include the
requested value . According to some embodiments , node 805
may inquire the node in the query radius which has a closest
distance to the target node 825. The distance may be
measured according to the agent locations of the nodes ,
which , in turn , may be associated with the storage content of
each individual nodes , as described above . This way ,
RRDHT may associate the requested value with agent
locations in a manner analogous to the relationship between
a value / key pair in a hash table . In FIG . 8 , node 805 may
have two nodes 815 and 835 , in the query radius . Between
these two references , node 835 may have a closest distance
to target node 825. Thus , node 805 may inquire node 835 , as
shown by arrow 855 , about the availability of the requested
value . If node 835 stores the requested value , node 835 may
return the requested value , and the discovery may terminate .
[0136] Conversely , if the requested value is not available
in the query radius , the foregoing discovery may be repeated
around a new center at node 835. For example , node 835
may also have a store radius and a query radius . The store
radius indicate a bucket of nodes whose storage content
node 835 may have knowledge about , while the query radius
may correspond to a bucket of nodes with which node 835
may have connections . Node 835 may continue the discov
ery by first examining its store radius and then expand to the
query radius , and so on . In this specific example in FIG . 8 ,
target node 825 may reside within the store radius of node
835. Thus , in response to the examination of node 835 , as
shown by arrow 860 , node 825 may return the requested
value to node 835 which may further forward the requested
value to node 805 , and the discovery may end .
[0137] FIG . 9 illustrate an exemplary discovery process
900 in a Holochain network . The requesting node may start
from a requesting node looking for a requested value (block
905) . The requesting node may first examine whether the
requested value is stored by any of peer nodes in the store
radius based on the agent loc of the requesting node (blocks
910 and 915) . If the requested value is available in the store
radius , the storing node may return the requested value to the
requesting node (block 920) , and the requesting node may
terminate the discovery (block 925) . Conversely , if the
requested value is not available , the requesting node may
expand its search to the peer nodes in the query radius (block
930) . The requesting node may inquire whether the
requested value is stored by any of the peer nodes in the
query radius (block 935) . According to some embodiments ,
the requesting node may inquire the node (“ inquired node ”)
in the query radius that has a closest distance to the target
node . The distance may be measured based on the agent
locations of the nodes . If the requested value is stored in the
query radius , the storing node may return the requested
value (block 920) and the discovery may end (block 925) .
Conversely , if the requested value is not available in the
query radius , the discovery may shift the center to the
inquired node (block 940) . The inquired node may continue
the discovery by repeating the foregoing searching process .

US 2020/0389521 A1 Dec. 10 , 2020
12

[0138] According to some embodiments , requesting node
805 may choose to keep references to a certain number of
additional nodes outside the query radius , for example , node
410 in FIG . 4. When a node discovers such a reference , it
will decide whether the node should be kept in favor of
existing references . For example , the node may give a
preference to closer nodes . This algorithm gives preference
to closer nodes , and could be something like the following :

[0139] Given the loc space remaining outside the query
radius

[0140] Call a 34 % sized zone exactly in the center zone
" X3 "

[0141] Call two adjacent 22 % sized zones “ X2A ” and
" X2B ”

[0142] Call the remaining two 11 % sized zones “ X1A ”
and “ X1B ”

[0143] Nodes will track up to 2 peers in each zone . If they
already have two peers , a quality algorithm will decide
which to keep based on responsiveness , size of store , query
radii , and other metrics . Imagine a worst - case scenario : a
DHT network with 4 billion nodes . The network stores so
much data that all nodes choose to only index a radius of 1
and keep a query radius of 2. A worst - case query should be
O (log n) / roughly 22 hops .
[0144] But individual node references do not take up that
much memory space , so nodes could , in fact , store a great
deal more references than the above algorithm , and publish
a much wider query radius than 2. These factors greatly
reduce the number of hops to query . In most real - world
applications , it should be trivial to achieve full query radius
coverage , thus reducing the hops for any query to 1 .
[0145] Bootstrapping
[0146] A node that would like to join a Holochain network
may first go through a bootstrap process . During bootstrap
ping , the joining node may need to know the address of at
least another node- a bootstrap node — that is already par
ticipating in the Holochain network . Upon joining the Holo
chain network , the joining node may reset its address
indexing , store radius and query radius to zero . The joining
node may not self - elect any radii without first knowing that
it may see a threshold number of nodes within the radius that
the joining node attempts to store or query . According to
some embodiments , the threshold may be associated with a
resilience factor (“ R ”) which represent a level of availability
in case one of more of the nodes within the radius become
offline . For example , if the resilience factor is 25 , the joining
node may not publish either a store or query radius greater
than zero until after the joining node has expended enough
such that there are 25 peer nodes reside within the radius that
the joining node attempts to publish .
[0147] Publishing Date and Gossip
[0148] Push
[0149] In a Holochain network , publishing data may
require a node (“ publishing node ”) communicating with a
peer node which claims responsibility for storing that data .
The publishing node may then push that data to the storing
node in an exponential manner , for example , using a pro
tocol with low overhead such as UDP . The publishing node
may already know what peer nodes should be storing the
data because those peer nodes are in the bucket within its
store radius . According to some embodiments , depending on
the networking protocol of the Holochain network , it may be
preferred to publish the data to more than one peer nodes to
achieve better reliability and availability . Further , the pub

lishing node may re - publish the data periodically or when
the date receives a new update .
[0150] Pull
[0151] After a node is initially synchronizing to the net
work to achieve a store radius , the node may need to
continuously maintain consistency afterwards . The node
may gossip with other peer nodes which overlap , at least
partially , the same store radius . The nodes may compare the
storage content with and pull data from , as needed , each
other to remain the synchronization and data consistency .
[0152] The various embodiments described above are pro
vided by way of illustration only and should not be con
structed to limit the scope of the disclosure . Various modi
fications and changes can be made to the principles and
embodiments herein without departing from the scope of the
disclosure and without departing from the scope of the
claims .
What is claimed is :
1. A system for coordinating distributed computation , the

system comprising :
a plurality of nodes , each node including a processing

element , a network interface , and a memory , the plu
rality of nodes communicatively coupled together via a
network ;

a keyspace defined across the plurality of nodes , the
keyspace having a simple closed shape with a number
of dimensions ;

wherein each node of the plurality of nodes has a location
in the keyspace as defined by a hash function mapping
inputs to points in the keyspace , and a location in the
network ;

wherein a first node has a first store radius , the first store
radius describing a closed shape in the keyspace asso
ciated with the location of the node in the keyspace , the
first store radius having one fewer dimension than the
number of dimensions in the keyspace , and wherein the
memory in the first node stores information at memory
locations associated with keyspace locations within the
first store radius ;

wherein first node has a first query radius , the first query
radius describing a closed shape in the keyspace asso
ciated with the location of the node in the keyspace , the
first query radius having one fewer dimensions than the
number of dimensions in the keyspace , wherein the first
query radius is larger than the first store radius ;

wherein a first subset of the nodes from the plurality of
nodes have keyspace locations within the first query
radius , and the first node stores the network location of
the first subset of the nodes , each of the nodes in the
first subset of the nodes having a secondary store radius
and a secondary query radius ;

wherein the processing element of each node is operable
to respond to a request for information stored at an
arbitrary location in the keyspace by :

if the requested information has a keyspace location
within the store radius , returning the value of the
information from the first node ;

if the requested information has a keyspace location
outside the store radius but inside the query radius ,
querying , via the network , a second node from the first
subset of the nodes within the query radius and return
ing the value of the information returned from the
second node with a secondary store radius encompass
ing the requested keyspace location ;

US 2020/0389521 A1 Dec. 10 , 2020
13

returning a network location referral to a third node ,
wherein the keyspace location of the third node has a
lower distance from the keyspace location of the
requested information than the keyspace location of the
first node .

2. The system of claim 1 wherein the processing element
of each node is operable to respond to the request for
information by one of responding with information retrieved
from an associated memory location in a node ; responding
with the output of a calculation ; and responding with the
output of a calculation , wherein one of the inputs to the
calculation was retrieved from a memory location in a node .

3. The system of claim 2 wherein the keyspace forms a
two - dimensional circle .

4. The system of claim 2 wherein the keyspace is non
Euclidean .

5. The system of claim 2 wherein the location of the first
node in the keyspace is inside the store radius of the first
node .

6. The system of claim 2 wherein the location of the first
node in the keyspace is inside the query radius of the first
node .

7. The system of claim 2 wherein the first node further
stores the network location of a second subset of the nodes ,
wherein each of the nodes in the second subset of the nodes
has a keyspace location outside the first query radius , and
each of the nodes in the second subset having a tertiary store
radius and a tertiary query radius .

8. The system of claim 7 wherein none of the tertiary
query radii overlap with the first query radius .

9. The system of claim 7 wherein the maximum number
of nodes in the second subset of the nodes is capped .

10. A method for coordinating distributed computation ,
the method comprising :

communicatively coupling a plurality of nodes via a
network , each node including a processing element , a
network interface , a network location , and a memory ;

defining a keyspace across the plurality of nodes , the
keyspace having a simple closed shape with a number
of dimensions ;

assigning each node of the plurality of nodes a keyspace
location , a store radius , and a query radius ;

each keyspace location being defined by a hash function
mapping inputs to points in the keyspace ;

each store radius describing a closed shape in the key
space having one fewer dimension than the number of
dimensions in the keyspace ;

each query radius describing a closed shape in the key
space having one fewer dimension than the number of
dimensions in the keyspace , where the query radius is
greater than the store radius ;

receiving a request at a first node , the request being
associated with a keyspace location ;

if the requested information has a keyspace location
within the store radius of the first node , responding
from the first node ;

if the requested information has a keyspace location
outside the store radius of the first node but inside the
query radius of the first node , querying , via the net
work , a second node from the first subset of the nodes
within the query radius and returning the response
received from the second node ; or

returning a network location referral to a third node ,
wherein the distance from the keyspace location of the
third node to the keyspace location associated with the
request is less than the distance from the keyspace
location of the first node to the keyspace location
associated with the request .

11. The method of claim 10 wherein returning a response
includes one of responding with information retrieved from
a memory location associated with a node ; responding with
the output of a calculation ; and responding with the output
of a calcul n , wherein one of the inputs to the calculation
was retrieved from a memory location in a node .

12. The method of claim 11 wherein the keyspace location
of each node is contained within the store radius of the same
node .

13. The method of claim 11 wherein the store radius of
each node is located within the query radius of the same
node .

14. The method of claim 11 wherein the keyspace forms
a two - dimensional circle .

15. The method of claim 11 wherein the keyspace is
non - Euclidean .

16. The method of claim 11 wherein the third node has a
keyspace location outside the query radius of the first node .

17. A node in a distributed processing system , the node
comprising :

a processing element , a network interface , a network
location , a first keyspace location , and a memory ,
wherein the processing element is operable to :

compute a requested location within a multidimensional
keyspace corresponding to a distributed hash table ;

store and retrieve information corresponding to a first
closed area within the keyspace in the memory ;

store and retrieve information corresponding to a second
closed area within the keyspace in the memory ;

receive a request via the network interface , the request
being associated with a keyspace location ;

if the request keyspace location is within the first closed
area within the keyspace , responding to the request
using the information retrieved from the memory cor
responding to the request keyspace location ;

if the request keyspace location is within the second
closed area within the keyspace , forwarding the request
to a network location retrieved from the memory cor
responding to the request keyspace location ; or

returning a network location referral , wherein the network
location referral target is closer to the request keyspace
location than first keyspace location .

18. The node of claim 17 wherein responding to the
request using the information retrieved from the memory
corresponding to the request keyspace location includes one
of responding with information retrieved from the memory ;
responding with the output of a calculation ; and responding
with the output of a calculation , wherein one of the inputs to
the calculation was retrieved from the memory .

19. The node of claim 18 wherein the keyspace location
of the node is contained within the first closed area within
the keyspace .

20. The node of claim 19 wherein the first closed area
within the keyspace is contained within the second closed
area within the keyspace .

