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HOLOCHAIN - A FRAMEWORK FOR 
DISTRIBUTED APPLICATIONS 

CROSS - REFERENCES TO RELATED 
APPLICATIONS 

[ 0001 ] This application claims the benefit of and is entitled 
to the priority date of provisional application 62 / 858,910 , 
entitled HOLOCHAIN — A FRAMEWORK FOR DIS 
TRIBUTED APPLICATIONS , filed Jun . 7 , 2019 , and is 
hereby incorporated in its entirety by reference . 

TECHNICAL FIELD 

[ 0002 ] The present disclosure relates generally to distrib 
uted computing , and more particularly to a system for 
finding and returning connections or content from one or 
more nodes in a sparsely - connected multi - node computing 
system where no single node has a comprehensive index of 
nodes or content managed by those nodes . 

BACKGROUND 

[ 0003 ] While it is possible to design computing systems 
that don't use state , many problems , particularly those that 
are designed to reflect human interactions and the physical 
world are easier to model when the computing system has 
state . 

[ 0004 ] Traditional software applications manage state by 
storing all the memory in a single place , like a filesystem or 
database . Just like our house or our bank account , these 
systems only allow a single program to change what is 
stored in the memory . This " single system ” state manage 
ment is intuitive and still the most broadly used system for 
managing computer system state . Even when programs were 
developed using multiple threads , single systems usually 
either delegate state management to a single thread , or they 
use a method of handing off control between different 
threads so that only one thread is “ in control ” of the state at 
any given time . 
[ 0005 ] The problem with state is that it represents a hidden 
input to each of the functions that rely on it — and it may be 
changed outside of our control . For example , we may think 
that we have a certain amount of money in our bank account . 
But if someone has stolen our passwords and taken money 
out of our account , our record of how much money we have 
in our account doesn't agree with the bank account’s record . 
[ 0006 ] When we think about " real world ” state , we have 
certain things that we try to control very carefully , like the 
amount of money in our bank account or the location of our 
things in our house . We have security systems that allow us 
to make sure that the state of these protected assets doesn't 
change without us knowing . In the case of our house , we 
have locks that make sure that we are the only ones allowed 
inside to move around our things . For things like our bank 
account , we make sure that any transactions that change the 
balance are approved by us . 
[ 0007 ] Designing Computing Systems with State 
[ 0008 ] While it is possible to design computing systems 
that don't use state , many problems — particularly those that 
are designed to reflect human interactions and the physical 
world are easier to model when the computing system has 
state . 
[ 0009 ] Traditional software applications manage state by 
storing all the memory in a single place , like a filesystem or 
database . Just like our house or our bank account , these 

systems only allow a single program to change what is 
stored in the memory . This " single system ” state manage 
ment is intuitive and still the most broadly used system for 
managing computer system state . Even when programs were 
developed using multiple threads , single systems usually 
either delegate state management to a single thread , or they 
use a method of handing off control between different 
threads so that only one thread is “ in control ” of the state at 
any given time . 
[ 0010 ] Distributed Computing 
[ 0011 ] The need to manage state is acute with distributed 
computing systems . A distributed computing system is a 
group of computing systems — frequently called nodes 
which work together to maintain a unified or consistent view 
of the state represented in the system as a whole . 
[ 0012 ] Single system state management is not easily com 
patible with distributed computing . As soon as multiple 
programs need to interact with the stored state , all the 
different programs need to be coordinated . In computing 
terms , the different programs wanting to interact with the 
system state are either “ readers ” ( programs retrieving some 
stored value from the memory ) or “ writers ” ( programs 
adding to the memory or changing a stored value in the 
memory ) . 
[ 0013 ] Distributed systems are a generalization of the 
multi - reader and multi - writer threaded programs that work 
on a single computing system . Logically , there is no reason 
why readers or writers cannot be on separate physical nodes , 
communicating via messages . The various nodes cooperate 
to maintain the shared system state . 
[ 0014 ] Distributed systems usually have more resources 
available to them than single systems . This can result in 
higher performance or higher availability for distributed 
systems . But there is a tradeoff : distributed systems are 
subject to communication - based failures that can compro 
mise the system . The CAP theorem states that it is impos 
sible for a distributed data store to simultaneously provide 
more than two out of the following three guarantees : 

[ 0015 ] Consistency : Every read receives the most 
recent write or an error . 

[ 0016 ] Availability : Every request receives a ( non - er 
ror ) response without the guarantee that it contains 
the most recent write . 

[ 0017 ] Partition tolerance : The system continues to 
operate despite an arbitrary number of messages being 
dropped ( or delayed ) by the network between nodes . 

[ 0018 ] The job of a state coordination function is to 
manage the tradeoffs within a distributed computing system . 
These state coordination functions are used to achieve the 
best possible consistency , availability , and partition toler 
ance possible , while mitigating or reducing the number of 
failures . 
[ 0019 ] The job of a state coordination function is to 
manage the tradeoffs within a distributed computing system . 
These state coordination functions are used to achieve the 
best possible consistency , availability , and partition toler 
ance possible , while mitigating or reducing the number of 
failures . 
[ 0020 ) Representing State 
[ 0021 ] Before discussing various state coordination func 
tions , it is helpful to think about how state is stored . Within 
a computing system , any sort of storage organization system 
can be used to maintain state , including ordered / unordered 
flat files , ISAM , heap files , hash buckets , B + trees , logs , and 
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log - structured merge trees . A state storage engine may also 
have many layers , each operating under different principles . 
Careful attention to how the state is stored and manipulated , 
however , makes it easier to make guarantees about the 
correctness of the data . 
[ 0022 ] Different types of state storage may be mutable or 
immutable . A mutable storage can have its records modified . 
An immutable storage can only add information to the 
storage ; previously written information cannot be changed . 
[ 0023 ] Many common mutable data storage engines use a 
relational structure . A relational database organizes data into 
one or more tables ( or “ relations ” ) of columns and rows , 
with a unique key identifying each row . The data can be 
“ normalized ” to ensure that each piece of information is 
stored in exactly one place . In a normalized relational 
database , all changes to the stored state can be expressed in 
terms of an ordered set of create , read , update , and delete 
statements , each acting on a specified domain and range 
within each relation . An ordered set of these state - modifying 
statements , applied together , is referred to as a transaction . 
If the transaction applies completely , or not at all , then the 
transaction is atomic . 
[ 0024 ] Relational databases are flexible , supporting ad 
hoc querying and updates to the stored data . But the strict 
data typing and referential controls necessary to support 
such flexibility also make relational databases hard to effec 
tively scale up to respond to many readers and writers . If 
there is only one place where a particular piece of data is 
stored , then access to a particular piece of information may 
be a bottleneck , reducing availability . 
[ 0025 ] Some databases address this issue by denormaliz 
ing ( storing the data in more than one place ) or using 
alternative , non - relational data structures . These databases , 
sometimes called “ NoSQL databases , " relax the data type , 
data organization , or referential controls commonly found in 
relational databases in order to achieve better availability , 
partition tolerance , or performance , at the cost of reduced 
consistency . These NoSQL data storage engines are also 
examples of mutable data stores . 
[ 0026 ] Alternatively , a data storage engine can have 
immutable storage . For example , one type of immutable 
storage engine uses a log - structured storage engine . A log is 
an append - only , ordered sequence of records ordered by 
time . Changes to the system state are recorded as atomic 
changes in the log . At any time , the system state is defined 
by the ordered set of changes recorded in the log . If two 
nodes have the same contents in their state logs , then their 
states are consistent . 
[ 0027 ] One alternative to totally - ordered log - based state 
storage is the use of additive data structures such as conflict 
free replicated data types ( CRDTs ) . CRDTs are data types 
that can be applied in any order by different nodes , and the 
end result will be consistent . This means that CRDT - based 
state storage has high availability and high partition toler 
ance , but low immediate consistency . CRDTs provide strong 
eventual consistency , so long as the disparities between 
different data stores can be tolerated during the period when 
replicas may be inconsistent . All nodes that have “ merged ” 
all the data structure changes , regardless of the order in 
which the changes are presented , are guaranteed to be in a 
consistent state . 
[ 0028 ] Hash Chains 
[ 0029 ] One important type of immutable storage is a hash 
chain or hash tree ( sometimes called " blockchains ” or 

“ Merkle trees , ” respectively ) . Hash chains are data struc 
tures in which each record contains both information to be 
stored , one or more update rules , and a secure cryptographic 
hash of the immediately preceding record . Because each 
record includes the preceding hash , recursively to the start of 
the data structure , anyone receiving a copy of the data 
structure can independently verify the integrity of the entire 
record by applying the update rules to the stored data and 
calculating the appropriate hashes . This makes a hash chain 
or hash tree effectively immutable , even if it stored in a 
mutable storage , because any changes to the data invalidate 
the cryptographic hashes embedded in the chain . 
[ 0030 ] State Coordination Functions 
[ 0031 ] State coordination functions can generally be cat 
egorized as one of two types— either centralized or decen 
tralized . Decentralized state management can further be 
divided into distributed state storage and distributed state 
management . 
[ 0032 ] Distributed Systems , Centralized State 
[ 0033 ] Systems with centralized state management have a 
designated center point by which and through which deci 
sions for the entire system are made . To allow multiple 
independent programs to change the contents of the memory , 
there are protocols that ensure that each writer is authorized 
to make its changes and that the changes are made in a 
careful way that prevents conflicts and makes sure that all 
the readers see a consistent picture . Common state update 
protocols include two phase commit and three phase com 
mit , both of which are frequently used in databases . 
[ 0034 ] But these protocols are used to coordinate multiple 
programs interacting with the stored state but the state is 
still primarily maintained in one place . The nodes might be 
distributed , but the state is centralized . In terms of the CAP 
theorem , distributed systems with centralized state manage 
ment have high consistency and high partition tolerance , but 
lower availability . The central management node can be a 
bottleneck due to all state management needing to go 
through that single node , and it is difficult for distributed 
system to deal with the loss of the node which implements 
the state management function . 
[ 0035 ] Distributing State Storage 
[ 0036 ] One response to the problem of centralized state is 
to distribute the state across more than one node . In a 
distributed state storage system , the state the memory — is 
either sharded , replicated , or both . 
[ 0037 ] Sharding 
[ 0038 ] In a sharded system , parts of the system state are 
stored on and managed by different nodes in the system . If 
a process needs to either read or store a value in the shared 
state , it first identifies a sharding key allows it to identify 
which node is storing and managing that particular part of 
the system state . The process then interacts with the node 
managing that part of the system state to read or write the 
value accordingly . 
[ 0039 ] The advantage of a sharded system is that no single 
node is responsible for updating or storing all of the state 
associated with the system . This means that the load asso 
ciated with state management can be spread out across the 
distributed system . Further , if a single node goes down , then 
only the fraction of the state managed by that node becomes 
unavailable . In terms of the CAP theorem , a sharded system 
is equivalent to a system with centralized state , but the 
chance that availability will be compromised by the loss of 
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a node is 1 / n , where n is the number of different nodes 
participating in the sharded state storage . 
[ 0040 ) Replication 
[ 0041 ] In a replicated system , some or all of the system 
state is duplicated across one or more nodes . The state may 
be completely duplicated , such for a database with a standby 
node , or it may be partially replicated . Updates made on one 
copy are communicated to the various replicas . These 
updates are usually distributed using one or more of trans 
actional replication , state machine replication , or virtual 
synchrony . 
[ 0042 ] Transactional replication refers to a model where 
each update is equivalent to the serialized stream of changes 
applied during that update . For example , a transaction log 
can be used to implement transactional replication between 
two nodes . 
[ 0043 ] State machine replication is a process by which the 
changes and the state of the system are jointly represented as 
a closed set of changes that can be applied to each node . 
Hash chains and CRDTs can be used to implement state 
machine replication . 
[ 0044 ] Virtual synchrony involves a group of processes 
which collectively work in tandem to create a replicated 
state . Not every node needs to participate ; smaller groups of 
nodes are organized into process groups . Nodes join a group 
and are provided with a checkpoint containing the current 
state of the data replicated by group members . Nodes then 
send multicasts to the group and see incoming multicasts in 
the identical order . Membership changes are handled as a 
special multicast that delivers a new “ membership view ” to 
the nodes in the group . 
[ 0045 ] Coordinating State Updates 
[ 0046 ] Depending on the state management function , 
updates to the shared state may be performed on only one of 
the copies , the “ master , " or on any copy . If updates can only 
be made to the master copy , then the system has centralized 
state with recovery to another node . If more than one node 
can receive updates to the common system state , then some 
type of distributed state management is required . 
[ 0047 ] Some of the state replication methods identified 
above can also be used to implement a distributed state 
management function . In particular , state machine replica 
tion assumes that the replicated process is a deterministic 
finite automaton and that atomic broadcast of every event is 
possible . 
[ 0048 ] Consensus Algorithms 
[ 0049 ] A distributed state management algorithm is also 
known as a consensus algorithm . A consensus algorithm is 
one that allows different nodes to agree on a particular value 
in the shared state . Examples of applications of consensus 
include whether to commit a transaction to a database , 
agreeing on the identity of a leader , state machine replica 
tion , and whether to add a particular record to a hash chain . 
Examples of well - known consensus algorithms include 
Paxos and Raft . 
[ 0050 ] Consensus algorithms are designed to be resilient 
in the presence of network failures and changed messages . 
In general , consensus algorithms have the following prop 
erties : 

[ 0051 ] Termination : Eventually , every correct process 
decides some value . 

[ 0052 ] Integrity : If all ( or some specified number of ) 
correctly - operating participants propose the same value 
V , then the outcome of the process must equal v . 

[ 0053 ] Agreement : Every correct process must agree on 
the same value . 

[ 0054 ] To achieve this result , most consensus algorithms 
take one of two approaches . In the first approach , there is a 
deterministic process for electing one of the participating 
nodes to be a " leader . ” The leader determines the correct 
state value and communicates it to the other nodes . A 
leader - based approach also includes rules for handling fail 
ure of the leader node and network splits that result in 
inconsistent leader elections . 
[ 0055 ] A second approach for consensus algorithms uses 
concurrent computation and comparison . In a concurrent 
computation and comparison approach , each participating 
node is able to compute and propose a new state value . If 
some number of participating nodes agreeusually a major 
ity — then the new state value is accepted as the correct 
value . 
[ 0056 ] Byzantine Fault Tolerance 
[ 0057 ] Some consensus protocols are also designed to deal 
with some number of faulty or malicious nodes participating 
in the network . Protocols that are designed to be robust 
against faulty or malicious nodes are said to have “ Byzan 
tine Fault Tolerance , " named for the paper that introduced 
the concept . Byzantine Fault Tolerant ( BFT ) systems either 
include a number of message rounds between node partici 
pants , verifying state information , or they are built upon 
unforgeable message signatures , such as digital signatures . 
[ 0058 ] Content and Node Addressing 
[ 0059 ] One problem not discussed above is the problem of 
addressing : when state values are being replicated , or con 
sensus messages are being exchanged , each node needs to 
know how to reach other nodes participating in the distrib 
uted system . 
[ 0060 ] The simplest way to handle addressing is for all 
nodes to have a list of other participating nodes , or to have 
a known “ name node ” that keeps track of the address 
information for all participating nodes . This is a solution for 
systems where the number of nodes is known , and where 
nodes like the name node can be trusted . But if nodes cannot 
necessarily be trusted , or if nodes are transient , a different 
solution can be used : a distributed hash table , or DHT . 
[ 0061 ] A hash table is a data structure that associates keys 
to values . Values are stored in the data structure according to 
a hash function that computes an index into a possible array 
of storage buckets , which themselves provide the value . A 
distributed hash table performs the same function across 
more than one node . Any participating node can efficiently 
retrieve the value associated with a given key . Responsibility 
for maintaining the mapping from keys to values is distrib 
uted among the nodes , in such a way that a change in the set 
of participants causes a minimal amount of disruption . This 
allows a DHT to scale to extremely large numbers of nodes 
and to handle continual node arrivals , departures , and fail 
ures . The particular hash function used is chosen minimize 
changes in lookup values when the number of participants 
changes . The four most popular approaches are rendezvous 
hashing , consistent hashing , the content addressable net 
work algorithm , and Kademlia distance . It is not always 
necessary that all possible values be stored in the DHT ; in 
some cases it may be enough to have a shared formula by 
which a value can be calculated from a particular key . 
[ 0062 ] For example , a Kademlia DHT works by specify 
ing the structure of the network and the exchange of infor 
mation through node lookups . Kademlia nodes communi 
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cate among themselves using User Datagram Protocol 
( UDP ) . A virtual or overlay network is formed by the 
participant nodes . Each node is identified by a number or 
node ID . The node ID serves not only as identification , but 
the Kademlia algorithm uses the node ID to locate values . 
When searching for some value , the algorithm takes the 
associated key and explores the network in several steps . 
Each step will find nodes that are closer to the key until the 
contacted node returns the value or no more closer nodes are 
found . When the closest nodes are found , they are returned 
to the requester . 
[ 0063 ] Existing Systems 
[ 0064 ] The most well - known hash chain application is 
“ Bitcoin , ” a hash chain - based cryptocurrency ledger . In the 
context of the systems above , Bitcoin is a distributed system 
with an immutable replicated state built on a hash chain . 
Bitcoin uses a Byzantine Fault Tolerant consensus algorithm 
to coordinate transactions . 
[ 0065 ] Specifically , the bitcoin blockchain is a public 
ledger that records bitcoin transactions between members of 
the network . It is implemented as a chain of blocks , each 
block containing a hash of the previous block up to the 
genesis block of the chain . Network nodes can validate 
transactions , add them to their copy of the ledger , and then 
broadcast these ledger additions to other nodes . To achieve 
independent verification of the chain of ownership each 
network node stores its own copy of the blockchain . 
[ 0066 ] A network of communicating nodes running bit 
coin software maintains the blockchain by “ mining , ” that is , 
running a lottery - like process of determining a random hash 
value that meets a set of acceptance rules . About every 10 
minutes , when an acceptable hash value is found , a new 
group of accepted transactions , called a block , is created , 
added to the blockchain , and quickly published to all nodes . 
[ 0067 ] Sometimes separate blocks are produced concur 
rently , creating a temporary fork . In addition to the immu 
table history , participants in the blockchain have an algo 
rithm for scoring different versions of the history so that the 
history with the highest value can be selected over others . 
Peers supporting the database have different versions of the 
history from time to time . They keep only the highest 
scoring version of the database known to them . Whenever a 
peer receives a higher - scoring version ( usually the old 
version with a single new block added ) they extend or 
overwrite their own database and retransmit the improve 
ment to their peers . There is never an absolute guarantee that 
any particular entry will remain in the best version of the 
history , but the shared concurrent computation rules award 
a higher value to adding new blocks than replacing old 
blocks . Therefore , the probability of an entry becoming 
superseded decreases exponentially as more blocks are built 
on top of it , eventually becoming very low . 
[ 0068 ] Another type of distributed and decentralized sys 
tem is used to manage source code control and updates . Two 
similar systems are called Git and Mercurial . Git and Mer 
curial are a distributed version - control system used to track 
changes in source code for use in software development . The 
files and changes to the files are organized as a Merkle tree , 
guaranteeing that the complete state of the version con 
trolled files is consistent . In addition , each change has a 
unique cryptographic address , allowing individual commits 
to be selectively addressed . 
[ 0069 ] Git and Mercurial each include a mutable index 
( also called stage or cache ) that caches information about the 

working directory and the next revision to be committed ; 
and an immutable , append - only object database . The object 
database represents the accepted state of the system . The 
object database contains four types of objects : 

[ 0070 ] A blob object ( binary large object ) is the content 
of a file . Blobs have no proper file name , time stamps , 
or other metadata . ( A blob's name internally is a hash 
of its content . ) 

[ 0071 ] A tree object is the equivalent of a directory . It 
contains a list of file names , each with some type bits 
and a reference to a blob or tree object that is that file , 
symbolic link , or directory's contents . These objects 
are a snapshot of the source tree . 

[ 0072 ] A commit object links tree objects together into 
a history . It contains the name of a tree object ( of the 
top - level source directory ) , a time stamp , a log mes 
sage , and the names of zero or more parent commit 
objects 

[ 0073 ] A tag object is a container that contains a refer 
ence to another object and can hold added metadata 
related to another object . 

[ 0074 ] When a developer commits a new revision , the 
temporary information is added to the accepted state . Git and 
Mercurial provide each developer a local copy of the entire 
state , and provides a mechanism for exchanging commits 
( state changes ) between different repositories . There is no 
universal addressing , but different repository signatures are 
maintained as they are merged . Thus the entire distributed 
source control mechanism can be seen as a distributed state 
consensus mechanism with periodic reconciliation between 
participating nodes . 
[ 0075 ] Freenet is another decentralized and distributed 
system used for censorship - resistant communication . It uses 
a decentralized distributed data store to keep and deliver 
information . Technically , it functions as content - addressed 
system paired with a distributed hash table . Typically , a host 
computer on the network runs the software that acts as a 
node , and it connects to other hosts running that same 
software to form a large distributed , variable - size network of 
peer nodes . Some nodes are end user nodes , from which 
documents are requested and presented to human users . 
Other nodes serve only to route data . All nodes communicate 
with each other identically , there are no dedicated “ clients ” 
or “ servers ” . It is not possible for a node to rate another node 
except by its capacity to insert and fetch data associated with 
a key . Keys are hashes , and so nodes can check that the 
document returned is correct by hashing it and checking the 
digest against the key . 
[ 0076 ] Content Addressing and Discovery 
[ 0077 ] Returning to the concept of addressing , distributed 
systems generally need a mechanism for discovery — that is , 
finding other nodes in the network based upon some criteria . 
A number of existing technologies present different methods 
of organizing clients so that they can be found without 
resorting to a single central directory . These include Chord , 
Hypercubes , and Kademlia ( discussed previously ) . 
[ 0078 ] 4.1 Chord 
[ 0079 ] FIG . 1 shows an exemplary 16 - node chord network 
100. In chord network 110 , as nodes 105 ( 1 ) - ( 16 ) come 
online they distinguish their position within the ring based 
on their identity . These nodes 105 ( 1 ) - ( 16 ) identify them 
selves to the nodes immediately in front of and behind 
themselves , and become a part of the ring chain . For 
example , node 105 ( 2 ) identifies itself to 105 ( 3 ) ( “ succes 
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different embodiments . To be concise , drawings may be used 
to facilitate descriptions of exemplary embodiments , and not 
all features of an actual implementation may be provided in 
the drawings . 
[ 0089 ] FIG . 1 shows an exemplary chord network . 
[ 0090 ] FIG . 2 shows an exemplary HyperCube . 
[ 0091 ] FIG . 3 shows an exemplary Kademlia network . 
[ 0092 ] FIG . 4 shows an exemplary information processing 
system . 
[ 0093 ] FIG . 5 shows the basic architecture of an exem 
plary holochain . 
[ 0094 ] FIG . 6 shows the structure of an exemplary source 
chain . 
[ 0095 ] FIG . 7 shows the operation of an exemplary holo 
chain application . 
[ 0096 ] FIG . 8 shows an exemplary Holochain network 
according to some embodiments . 
[ 0097 ] FIG . 9 shows an exemplary discovery process in a 
Holochain network according to some embodiments . 

DETAILED DESCRIPTION 

sor ” ) and nodes 105 ( 1 ) ( predecessor ” ) — the nodes imme 
diately in front of and behind node 105 ( 2 ) in a clockwise 
direction , respectively . As nodes 105 ( 1 ) - ( 16 ) go offline , they 
try to notify their connections , but in the case of failure , their 
connections will notice the lack of connectivity and relink 
themselves . 
[ 0080 ] Discovery requires messaging the closest node in 
the “ finger list ” , for example , the successor , then messaging 
the closest node in their “ finger list ” and so on . 
[ 0081 ] 4.2 HyperCube 
[ 0082 ] FIG . 2 shows an exemplary 2 - level HyperCube 
200. In level 2 , each node not only has sibling nodes but also 
a parent node . For example , when node 205 comes online , 
it connects with three siblings and one parent : nodes 210 , 
215 , 220 and 225. In HyperCube , as nodes come online , they 
simply take the next space in the tree structure . As nodes 
leave , vacancies are created that can be filled by future 
arriving nodes . In the dire case of too many nodes leaving , 
the existing nodes can reorganize . 
[ 0083 ] Discovery is a fairly straight - forward navigation 
question once the effectively randomly assigned position 
identifier of a node are known . 
[ 0084 ] 4.3 Kademlia 
[ 0085 ] In Kademlia , nodes are organized into “ k - buckets ” 
according to the binary digits of their identity . For example , 
the exemplary Kademlia network 300 includes 7 nodes 
305 ( 1 ) - ( 7 ) , as shown by the dots at the bottom in FIG . 3 . 
Assuming node 310 ( 6 ) ( with index “ 110 ” ) is the target node 
to be searched for , the remaining nodes 305 ( 1-5 ) and 310 ( 7 ) 
are peer nodes organized in 3 k - buckets 310 ( 1 ) - ( 3 ) , respec 
tively , as shown by the larger circles . The " distance ” as 
measured by the exclusive or ( XOR ) of two identities 
determines the relative closeness of another node , and a 
lopsided binary tree effectively means that references are 
maintained to more nodes closer to the target identity than 
those further away . For example , nodes 305 ( 1 ) - ( 3 ) in 
k - bucket 310 ( 1 ) are the farthest nodes away from target node 
305 ( 6 ) , while node 305 ( 7 ) in k - bucket 310 ( 3 ) is the nearest 
node . 
[ 0086 ] Discovery requires making a query to a node that 
is known about as close to the target identity as possible 
( based on the XOR “ distance ” ) . That node should theoreti 
cally have references to more nodes in that particular neigh 
borhood and can get closer to the target identity . The 
discovery repeats until the contacted node returns identity of 
the target node ( i.e. , the target node is being found ) or no 
more closer nodes are found . 
[ 0087 ] As described above , values can be stored in a data 
structure using a hash table . The hash table associates keys 
to values . Given a key , the hash table computes a corre 
sponding index according to a hash function that in turn 
points to the value stored in an array . Locating a value in a 
Kademlia network follows the same procedure by locating 
the closest nodes to a key or index , and the search terminates 
when a node has the requested value in its store and returns 
this value . 

[ 0098 ] This disclosure describes a distributed system 
made up of a plurality of individual computing systems , 
each referred to as a “ node . ” Referring now to FIG . 4 , 
diagram 400 shows an information processing system 410 
which may function as a node , coupled to a network 405 . 
The network 405 could be any type of network , for example , 
wired network , wireless network , a private network , a public 
network , a local area network ( LAN ) , a wide area network 
( WAN ) , a wide local area network ( WLAN ) , a combination 
of the above , or the like . The network may also be a virtual 
network , such as an overlay or underlay network . In some 
embodiments , the network may operate on more than one 
level such that connections between nodes are virtually 
addressed or content addressed . An information processing 
system is an electronic device capable of processing , execut 
ing or otherwise handling information . Examples of infor 
mation processing systems include a server computer , a 
personal computer ( e.g. , a desktop computer or a portable 
computer such as , for example , a laptop computer ) , a 
handheld computer , and / or a variety of other information 
handling systems known in the art . The information pro 
cessing system 410 shown is representative of , one of , or a 
portion of , the information processing systems described 
above . 
[ 0099 ] The information processing system 410 may 
include any or all of the following : ( a ) a processor 412 for 
executing and otherwise processing instructions , ( b ) one or 
more network interfaces 414 ( e.g. , circuitry ) for communi 
cating between the processor 412 and other devices , those 
other devices possibly located across the network 405 ; ( c ) a 
memory device 416 ( e.g. , FLASH memory , a random access 
memory ( RAM ) device or a read - only memory ( ROM ) 
device for storing information ( e.g. , instructions executed by 
processor 412 and data operated upon by processor 412 in 
response to such instructions ) ) . In some embodiments , the 
information processing system 410 may also include a 
separate computer - readable medium 418 operably coupled 
to the processor 412 for storing information and instructions 
as described further below . 
[ 0100 ] In one embodiment , there is more than one network 
interface 414 , so that the multiple network interfaces can be 
used to separately route management , production , and other 
traffic . In one exemplary embodiment , an information pro 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0088 ] Various embodiments of the disclosed concepts are 
illustrated by way of example and not by way of limitation 
in the accompanying drawings in which like references 
indicate similar elements . It should be noted that references 
to " some ” embodiments in this disclosure mean at least one 
embodiment and they are not necessarily the same or 
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cessing system has a “ management interface at 1 GB / s , a 
" production ” interface at 10 GB / s , and may have additional 
interfaces for channel bonding , high availability , or perfor 
mance . An information processing device configured as a 
processing or routing node may also have an additional 
interface dedicated to public Internet traffic , and specific 
circuitry or resources necessary to act as a VLAN trunk . 
[ 0101 ] In some embodiments , the information processing 
system 410 may include a plurality of input / output devices 
420a - n which are operably coupled to the processor 412 , for 
inputting or outputting information , such as a display device 
420a , a print device 420b , or other electronic circuitry 
420c - n for performing other operations of the information 
processing system 410 known in the art . 
[ 0102 ] With reference to the computer - readable media , 
including both memory device 416 and secondary computer 
readable medium 418 , the computer - readable media and the 
processor 412 are structurally and functionally interrelated 
with one another as described below in further detail , and 
information processing system of the illustrative embodi 
ment is structurally and functionally interrelated with a 
respective computer - readable medium similar to the manner 
in which the processor 412 is structurally and functionally 
interrelated with the computer - readable media 416 and 418 . 
As discussed above , the computer - readable media may be 
implemented using a hard disk drive , a memory device , 
and / or a variety of other computer - readable media known in 
the art , and when including functional descriptive material , 
data structures are created that define structural and func 
tional interrelationships between such data structures and the 
computer - readable media ( and other aspects of the system 
400 ) . Such interrelationships permit the data structures ' 
functionality to be realized . For example , in one embodi 
ment the processor 412 reads ( e.g. , accesses or copies ) such 
functional descriptive material from the network interface 
414 , the computer - readable media 418 onto the memory 
device 416 of the information processing system 410 , and 
the information processing system 410 ( more particularly , 
the processor 412 ) performs its operations , as described 
elsewhere herein , in response to such material stored in the 
memory device of the information processing system 410. In 
addition to reading such functional descriptive material from 
the computer - readable medium 418 , the processor 412 is 
capable of reading such functional descriptive material from 
( or through ) the network 405. In one embodiment , the 
information processing system 410 includes at least one type 
of computer - readable media that is non - transitory . For 
explanatory purposes below , singular forms such as “ com 
puter - readable medium , ” “ memory , " and " disk ” are used , 
but it is intended that these may refer to all or any portion 
of the computer - readable media available in or to a particu 
lar information processing system 410 , without limiting 
them to a specific location or implementation . 
[ 0103 ] The information processing system 410 may 
include a container manager 430. The container manager is 
a software or hardware construct that allows independent 
operating environments to coexist on a single platform . In 
one embodiment , the container manager is a hypervisor . In 
another embodiment , the container manager is a software 
isolation mechanism such as Linux cgroups , Solaris Zones , 
or similar . The container manager 430 may be implemented 
in software , as a subsidiary information processing system , 
or in a tailored electrical circuit or as software instructions 
to be used in conjunction with a processor to create a 

hardware - software combination that implements the specific 
functionality described herein . To the extent that software is 
used to implement the hypervisor , it may include software 
that is stored on a computer - readable medium , including the 
computer - readable medium 418. The container manager 
may be included logically “ below ” a host operating system , 
as a host itself , as part of a larger host operating system , or 
as a program or process running “ above ” or “ on top of ” a 
host operating system . Examples of container managers 
include Xenserver , KVM , VMware , Microsoft's Hyper - V , 
and emulation programs such as QEMU , as well as software 
isolation mechanisms such as jails , Solaris zones , and 
Docker containers . 

[ 0104 ] The container manager 430 includes the function 
ality to add , remove , and modify a number of logical 
containers 432a - n associated with the container manager . 
Zero , one , or many of the logical containers 432a - n contain 
associated operating environments 434a - n . The logical con 
tainers 432a - n can implement various interfaces depending 
upon the desired characteristics of the operating environ 
ment . In one embodiment , a logical container 432 imple 
ments a hardware - like interface , such that the associated 
operating environment 434 appears to be running on or 
within an information processing system such as the infor 
mation processing system 410. For example , one embodi 
ment of a logical container 434 could implement an interface 
resembling an x86 , x86-64 , ARM , or other computer 
instruction set with appropriate RAM , busses , disks , and 
network devices . A corresponding operating environment 
434 for this embodiment could be an operating system such 
as Microsoft Windows , Linux , Linux - Android , or Mac OS 
X. In another embodiment , a logical container 432 imple 
ments an operating system - like interface , such that the 
associated operating environment 434 appears to be running 
on or within an operating system . For example one embodi 
ment of this type of logical container 432 could appear to be 
a Microsoft Windows , Linux , or Mac OS X operating 
system . Another possible operating system includes an 
Android operating system , which includes significant run 
time functionality on top of a lower - level kernel . A corre 
sponding operating environment 434 could enforce separa 
tion between users and processes such that each process or 
group of processes appeared to have sole access to the 
resources of the operating system . In a third environment , a 
logical container 432 implements a software - defined inter 
face , such a language runtime or logical process that the 
associated operating environment 434 can use to run and 
interact with its environment . For example one embodiment 
of this type of logical container 432 could appear to be a 
Java , Dalvik , Lua , Python , or other language virtual 
machine . A corresponding operating environment 434 would 
use the built - in threading , processing , and code loading 
capabilities to load and run code . Adding , removing , or 
modifying a logical container 432 may or may not also 
involve adding , removing , or modifying an associated oper 
ating environment 434 . 
[ 0105 ] In one or more embodiments , a logical container 
has one or more network interfaces 436. The network 
interfaces ( NIS ) 436 may be associated with a switch at 
either the container manager or container level . The NI 236 
logically couples the operating environment 434 to the 
network , and allows the logical containers to send and 
receive network traffic . In one embodiment , the physical 
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network interface card 414 is also coupled to one or more 
logical containers through a switch . 
[ 0106 ] In one or more embodiments , each logical con 
tainer includes identification data for use naming , interact 
ing , or referring to the logical container . This can include the 
Media Access Control ( MAC ) address , the Internet Protocol 
( IP ) address , and one or more unambiguous names or 
identifiers . 
[ 0107 ] In one or more embodiments , a “ volume ” is a 
detachable block storage device . In some embodiments , a 
particular volume can only be attached to one instance at a 
time , whereas in other embodiments a volume works like a 
Storage Area Network ( SAN ) so that it can be concurrently 
accessed by multiple devices . Volumes can be attached to 
either a particular information processing device or a par 
ticular virtual machine , so they are or appear to be local to 
that machine . Further , a volume attached to one information 
processing device or VM can be exported over the network 
to share access with other instances using common file 
sharing protocols . In other embodiments , there are areas of 
storage declared to be “ local storage . ” Typically a local 
storage volume will be storage from the information pro 
cessing device shared with or exposed to one or more 
operating environments on the information processing 
device . Local storage is guaranteed to exist only for the 
duration of the operating environment ; recreating the oper 
ating environment may or may not remove or erase any local 
storage associated with that operating environment . 
[ 0108 ] In a distributed system involving multiple nodes , 
each node will be an information processing system 410 as 
described above in FIG . 4. The information processing 
systems in the distributed system are connected via a com 
munication medium , typically implemented using a known 
network protocol such as Ethernet , Fibre Channel , Infini 
band , or IEEE 1394. The distributed system may also 
include one or more network routing element , implemented 
as hardware , as software running on hardware , or may be 
implemented completely as software . In one implementa 
tion , the network routing element is be implemented in a 
logical container 432 using an operating environment 434 as 
described above . In another embodiment , the network rout 
ing element is implemented so that the distributed system 
corresponds to a group of physically co - located information 
processing systems , such as in a rack , row , or group of 
physical machines . 
[ 0109 ] The network routing element allows the informa 
tion processing systems 410 , the logical containers 432 and 
the operating environments 434 to be connected together in 
a network topology . The illustrated tree topology is only one 
possible topology ; the information processing systems and 
operating environments can be logically arrayed in a ring , in 
a star , in a graph , or in multiple logical arrangements through 
the use of VLANs . 
[ 0110 ] In one embodiment , one or more nodes acts as a 
controller to administer the distributed system . The control 
ler is used to store or provide identifying information 
associated with the different addressable elements in the 
distributed system specifically the cluster network router 
( addressable as the network routing element ) , each infor 
mation processing system 410 , and with each information 
processing system the associated logical containers 432 and 
operating environments 434 . 
[ 0111 ] In one embodiment , the distributed system includ 
ing the components described above is organized as a 

Holochain network . A Holochain network is a distributed 
system with content - addressed nodes , where identities , 
nodes , and storage elements are all addressed by crypto 
graphic hash values . Distributed applications run across 
multiple nodes in the network and the Holochain network is 
organized to provide a decentralized state coordination 
function so as to protect the integrity and functionality of the 
distributed , decentralized applications running on the net 
work . 
[ 0112 ] In a Holochain network , multiple individual hash 
chains are used to coordinate state between the various 
agents and the various nodes . Each hash chain is a ledger of 
records organized in “ blocks . " Each block in the hashchain 
may comprise a header and data ( or " content " ) wherein the 
data may include information about a list of transactions , for 
example . Each block may be identified by a key such as a 
block hash , usually a unique number for each block gener 
ated using a cryptographic hashing algorithm on the header 
of the block . The header itself may have one or more fields 
storing metadata . The metadata may include , for example , 
the block hash of the previous block ( or “ parent block ” ) , a 
root , and a timestamp . The block hash of the parent block ( or 
" previous block hash ” ) may again be generated using a 
cryptographic hashing algorithm on the header of the parent 
block . Because each block contains a previous block hash , 
the sequence of hashing linking each block to its parent 
block creates a chain going back all the way to the first block 
created ( or “ genesis block ” ) . The root in the metadata of 
each block may provide a summary of the data in the block . 
In this fashion , a hash chain is conceptually similar to a 
Merkle tree , but one with a limited branching factor . 
[ 0113 ] The above described layered relationships between 
header , root and data , and between child and parent blocks 
can ensure data integrity in a blockchain . For example , when 
the data of a block is modified in any way , including changes 
to the block metadata , the hash value of the block changes . 
Because each subsequent block in a hash chain recursively 
depends upon the values in previous blocks , any subsequent 
blocks must also have their hash values updated or the chain 
will be “ forked , ” with new values based on the new block 
hash value . Thus , any change in any block , from the root up 
to any intermediate block , will immediately be apparent 
upon inspection 
[ 0114 ] A Holochain network is designed as a framework to 
tackle the above described challenges and provide data 
integrity for distributed , decentralized applications . A Holo 
chain application ( i.e. , the application running on a Holo 
chain platform or HApp ) may comprise a network of nodes 
( or " agents ” ) , each maintaining a unique source chain of its 
local data , paired with a shared space implemented as a 
validating , monotonic , sharded , distributed hash table 
( DHT ) , where every node enforces validation rule ( s ) on data 
in the shared DHT as well as confirms provenance of the 
data according to an associated signature . Unlike prior art 
hash chains , such as the blockchain associated with Bitcoin , 
which rely on global consensus around a single shared chain 
encoding the entire state of the system , a Holochain network 
includes a separate hash chain for each discrete HApp 
( including each version of each HApp ) . To coordinate state , 
individually interested nodes agree on a state modification 
function and the hashable result of the coordination of the 
two private shared states . The shared DHT space allows the 
coordinating nodes to deterministically identify other nodes 
that can record and verify the particulars of each state 
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update . These “ witness ” nodes are spread psuedorandomly 
throughout the entire shared space , based upon a verifiable 
calculation distributing the witness nodes throughout the 
DHT using the hash of previous states as key inputs . Thus , 
only those who are interested in one particular set of 
transactions maintain the entire chain of state , but interac 
tions with the states of other chains are coordinated and 
“ witnessed ” so that each chain of transactions can be vali 
dated back to the root , while still only requiring each 
participating node to share state with only a limited number 
of nodes . By analogy , a Holochain network can be analo 
gized to real - world state updates , and an individual state 
update as a money transfer from A to B. Money can be 
transferred with validations from only A , B and a bank ( as 
a “ witness ” ) . It does not require consensus a global 
agreement — from all the customers because they are not 
engaged in the transaction at all . 
[ 0115 ] By eliminating the reliance on a global ledger , 
Holochain provides a truly decentralized application plat 
form with actual self - governance and mutual sovereignty . 
On the other hand , by still using source chains to enforce 
data integrity , a Holochain may function very much like a 
blockchain without bottlenecks when it comes to enforcing 
a validation rule , but may be designed to be fully distributed 
through sharding so each node only needs to maintain one or 
more portions of the shared DHT instead of a full copy of a 
global ledger . This makes it feasible to run blockchain - like 
applications on devices as lightweight as portable devices , 
such as mobile phones . 
[ 0116 ] FIG . 5 shows a basic architecture of exemplary 
Holochain 500. Holochain 500 may include three main 
sub - systems — HApp 505 , source chain 510 , and shared 
DHT 515. HApp 505 coordinates the system to present 
consistent application functionality to a user or agent . HApp 
505 may read and write local source chain 510 , and it may 
also get data from and put authorized data onto shared DHT 
515. HApp 505 includes validation rules for changing its 
local hash chain . Holochain 500 also includes other nodes 
connected to HApp 505 to provide independent system - level 
validation for changes proposed to be entered by HApp 505 . 
HApp 505 may be a computer application running on 
Holochain 500. HApp 505 may be accessed , for instance , 
with a web browser for a user interface . Application 505 
may be implemented using various programming tools , for 
instance , JavaScript , Lisp , Python or Go . 
[ 0117 ] In Holochain 500 , each node may have a local 
private space , like a local repository , for storing data ( or 
" content " ) . For example , in collaborative software develop 
ment , the data may be one or more coding files . Each node 
may be required to maintain an individual source chain 510 . 
Source chain 510 may be achieved by a hash chain , like 
blockchain . For example , source chain 510 may comprise 
one or more blocks . Each block may be identified by a key , 
such as a block hash , usually a unique number for each block 
which may be created by hashing the header of the block . 
The header may include one or more fields storing metadata . 
The metadata may include , for instance , a previous block 
hash of the parent block , a root , and a timestamp . Like 
blockchain , the sequence of hashing between the child and 
parent creates a linked chain all the way back to the genesis 
block . In the example of collaborative software develop 
ment , each block may be associated with one version of 
coding files . When HApp 505 carries out an action on the 
files , for instance , a file addition , deletion or change of 

content , a new version of the source chain is created . 
Accordingly , a new block may be provided including a new 
root which summarizes the action and new files . The action 
and new files may be validated based on a local validation 
rule before the new files are committed to the local reposi 
tory and the new block is added to source chain 510. When 
the node shares the data , the node may publish a concomi 
tant source chain 510 with a signature , which may be 
provided using a public - key encryption . Source chain 510 
may be shared with a group of selected nodes selected using 
the shared DHT as described below . Each selected node may 
further add new block ( s ) to source chain 510 to capture their 
subsequent , respective actions on the same data . For 
example , node A may create software version 1.0 with a first 
block in source chain 510. The first block may summarize 
the data in version 1.0 with A's actions . Node A may add its 
signature , perform a validation , commit the software to A's 
local repository , and share the software with node B. Node 
B may next take the software , develop it to version 2.0 , and 
update source chain 510 with a second block . The second 
block may summarize the data in version 2.0 with B's 
actions . Node B may then add its signature , complete the 
validation , commit the software to B's local repository , and 
pass the software onto a next node . The described operations 
may continue with the data sharing across Holochain 500 . 
Along the process , source chain 510 may provide a verifi 
able tamper - proof track of data , while the signature may 
allow a verification of the data provenance . 
[ 0118 ] FIG . 6 shows an exemplary structure of source 
chain 510. In FIG . 6 , local source chain 510 may include 
blocks 605-620 , wherein block 605 is the genesis block . 
Each block 605-620 may include a header and data ( not 
shown in FIG . 6 ) . As described , the header of each block 
605-620 may include one or more fields with metadata . For 
example , block 605 may comprise header0 , which may 
include one or more fields having metadata such as a 
timestamp ( indicating the time when block 605 is created ) , 
an entry hash ( e.g. , the root ) , an entry type ( e.g. , addition , 
deletion or modification of the data ) , an entry signature ( e.g. , 
the signature of the node creating block 605 ) , a previous 
header ( e.g. , the previous block hash ) , a Holochain ID , and 
the state modification rules applying to the HApp ( the HApp 
“ DNA ” ) . Headero may be hashed to create a block hash or 
an identifier of block 605 . 
[ 0119 ] Similarly , block 610 may also include a header and 
data ( not shown in FIG . 6 ) . The header of block 610 may 
further include metadata in one or more fields . The metadata 
of block 610 may comprise a timestamp , an entry hash , an 
entry type , an entry signature , and a previous header . In 
particular , the entry hash of block 610 may include 
key , which may be a hashed value of a data structure 
including ID in this group context , public key and ID 
descriptors . The foregoing process may repeat , for example , 
creating blocks 615 and 620 , for each individual action and 
new data committed to the local repository . 
[ 0120 ] Holochain is agent - centric because each node may 
share data with other nodes autonomously as wished without 
the need for a consensus from the entire system . To ensure 
data integrity , each entry may need to be first verified locally 
by the node — the source of data where it originates — and 
next validated at the system - level by a set number of other 
nodes identified through the shared DHT 515. The local 
validation may be used to ensure the structural validity of the 
local data . The local validation may be performed by each 

user 
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entity proposing a state update . In the case of a coordinated 
state update , like a transfer of information or credit from one 
HApp instance to another , all participating coordinating 
HApp instances all perform equivalent local validations 
using the state update functions described in the HApp 
“ DNA ” rules encoded into the application hash chain by 
HApp 505. Each entity should reach an identical new state , 
as validated by comparisons of the hashed values of the 
updated state and all previous hash chain state after applying 
the state update function . In addition , one or more nodes 
chosen from the DHT also follow the same update rule and 
store the result . After the local validation , node A may add 
its signature , and publish the new entry to shared DHT 515 
by sharing the data and concomitant source chain 510 with 
other nodes . 
[ 0121 ] Shared DHT 515 is a monotonic ledger because 
any entry added may no longer be deleted . Instead , it may 
only be tagged with a " deleted ” marker , which does not 
actually delete the entry but rather only allows it to be 
ignored . Shared DHT 515 may further be considered to 
reside at a “ public space ” because it is not located at the 
private space of one specific node . Instead , shared DHT 515 
may comprise all of the published source chains ( as a 
monotonic ledger ) and be held collectively by all of the 
nodes on Holochain 500. Unlike blockchain , each node may 
need to carry only one or more portions ( or shards ) of shared 
DHT 515 instead of a full copy of the entire ledger . In 
contrast to prior art blockchain systems , no node and no 
agent needs to hold all or even most of the ledger . In this 
distributed manner , each node may be responsible to main 
tain its own data and concomitant source chain 510 and be 
ready to provide them to other nodes for confirmation , when 
asked . In addition , all nodes may be responsible to share one 
or more portions of one or more other nodes ' source chains . 
For example , source chain 510 created by node A may be 
distributed to one group of selected nodes on Holochain 500 . 
Each selected node may retain a local copy of source chain 
510. The selected nodes may be identified according to one 
or more selection parameters . For example , the nodes may 
be chosen according to their respective “ distances ” from 
node A. The distances may be defined as the number of 
hop ( s ) in routing a message from node A to a given node , for 
example . Further , the nodes may be named based on their 
uptime such that the total sum of uptime of all of the selected 
nodes may exceed a resilience factor , which is determined 
based on reliability and availability requirements of Holo 
chain 500 or HApp 505. Note that this manner of selection 
may result in the Holochain network adapting to changes in 
topology and a shared DHT redistribution by regulating the 
number of network - wide redundant copies of shared source 
chains . 
[ 0122 ] When node A pushes new entry to shared DHT 
515 , a subset from the group of selected nodes may be 
picked as validators to perform the system - level validation 
of the new entry . The subset of nodes may be chosen 
randomly to represent unbiased witnesses . With a successful 
validation , the new entry may be accepted and allowed to 
propagate . Otherwise , it may be rejected , and the node 
initiating the invalid entry may be held accountable for the 
fraud . The validation rule may be defined specifically for 
each HApp 505. The validation rule may include , for 
instance , business rules , application logic , restrictions , etc. , 
which may have different demands for strictness of different 
applications . Further , the validation may change dynami 

cally in response to the configuration or variation of the 
applications . Each selected node may verify the entry shared 
by node A based on node A's source chain 510 , confirm the 
source of data based on A's signature , and validate the entry 
with the system - level validation rule . When a selected node 
completes all the checks successfully , it may mark the 
received data valid and then add its own signature . The 
selected node may further share the entry , like an initiating 
node . 
[ 0123 ] Holochain 500 may further provide a mechanism 
for nodes to share information regarding those who have 
broken validation rule ( s ) . The bad - acting nodes may be 
punished , for example , by being excluded from participation 
in HApp 505. In particular , nodes may use " gossip ” to share 
information about their experience of the behavior of other 
nodes . According to a gossip protocol , each node may 
maintain a set of metrics about another node , including a 
metric “ experience ” and a metric “ confidence ” of that expe 
rience . The set of metrics may be established through direct 
experiences with a given node or based on gossips from 
other nodes . The set of metrics may be stored at each node's 
own private space , and shared with other nodes directly as 
needed . In addition , each node may keep a signed declara 
tion ( or “ warranty ' ) as for any of the set of metrics , such as 
the metric experience or metric confidence . The warranty 
may be maintained in a manner similar to that of source 
chain 510. For example , when a node introduces a new 
metric or alerts an existing metric , its action ( s ) on the metric 
may be footprinted in the warranty . The warranty may 
function as a tool for other nodes to make provenance - based 
verifiable claims about a given node in the network . Those 
claims may be gossiped from one node to another which 
need to hear about the claims so as to make decisions about 
interacting with the given node . A node may determine the 
node to be gossiped with based on a measurement , for 
instance , a probabilistic value weighing that information 
from the given node may change the set of metrics of the 
node to be gossiped with . A node may further use its set of 
metric to determine a node to be gossiped about . In particu 
lar , the metric confidence may impact the selection of nodes 
to be gossiped with or about . A node with high confidence 
may be one that has first - hand experience with a given 
node's actions . This node may be allowed to gossip about 
the given node more proactively , for example , by “ pushing " 
a gossip about the given node to other nodes . Conversely , a 
node with low confidence may be only allowed to gossip 
passively through “ pulling ” —pulling information by other 
nodes from this node . There may be various reasons why a 
node has low confidence about a given node . For example , 
the node may have a unique relationship with a given node 
to be gossiped about , for instance , the node relies on the 
given node to route message . This unique relationship may 
negatively affect the node's confidence with the given node 
or discourage the node from gossip about the given node . 
[ 0124 ] FIG . 7 shows the operation of an exemplary Holo 
chain application . In FIG . 7 , a participant or node of HApp 
505 - Alice may write a message ( i.e. , data ) for sharing 
with other nodes of HApp 505 ( block 705 ) . Alice may 
cryptographically sign the message with a public - key 
encryption ( block 710 ) . The message , with Alice's signa 
ture , may be saved ( or committed ) locally at Alice's private 
space ( block 715 ) . The data , such as the message , plus 
Alice's signature , may be reserved into Alice's source chain 
510 after local validation ( block 720 ) . The message , with 
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features of an actual implementation are described in this 
disclosure . Moreover , the language used in this disclosure 
has been principally selected for readability and instruc 
tional purposes and has not necessarily been selected to 
delineate or circumscribe the full inventive scope of the 
disclosed subject matter , which is defined by the appended 
claims . 

( 0127 ] Agent Identity , Agent Location , Store Radius and 
Query Radius 

concomitant source chain 510 , may be shared by Alice with 
a subset of selected nodes ( block 725 ) . As described , the 
nodes may be selected as validators according to one or 
more parameters , for instance , their respective distances 
from Alice , their uptime , and a resilience factor . In addition , 
the validators may be chosen randomly to represent unbi 
ased witnesses . Each validator may check the validity of the 
shared message ( block 730 ) . For example , each validator 
may retain a local copy of Alice's published source chain 
510 and use it to validate the history of the message ( e.g. , the 
content of the message and editing by Alice ) . In addition , 
each validator may confirm the provenance of the message 
( e.g. , the message is initiated by Alice ) according to Alice's 
signature . Finally , each validator may validate that the 
message meets the system - level validation rule as defined by 
HApp 505. If any of the checks fails , the validator may reject 
the message and mark it “ rejected ” ( block 735 ) . Conversely , 
if the message passes the validation , a validator may accept 
the message , mark it “ valid ” and add its own signature 
( block_740 ) . The validator may take further actions as 
needed by HApp 505 , for example , adding a link to the 
message from Alice's profile ( block 745 ) . In addition , the 
validator may gossip its experience about Alice A with other 
nodes ( block 750 ) . As described , the gossip may involve the 
communication of a set of metrics . Each node being gos 
siped with may serve as a new validator to continuously 
verify messages ( block 755 ) , in the way as described above . 
Note that once a validator adds its own signature , this 
validator may be held accountable as well for an invalid 
message . If the message breaches a validation rule ( s ) , the 
message may be marked “ rejected ” and the node ( s ) sharing 
the message may be held liable ( block 760 ) . For example , 
nodes may gossip a warning about a bad - acting node , and 
the bad - acting node may further be excluded from partici 
pation in HApp 505 . 
[ 0125 ] In the Holochain network described above , each 
node is in communication with a subset of the other nodes 
in the network , but as the number of nodes increases , it 
becomes impractical for each node to be connected with all 
or even a substantial portion of the available nodes . The 
Holochain network may use a relaxed , agent - centric distrib 
uted hash table ( RRDHT ) structure to organize the nodes as 
well as perform discovery for a requested value . According 
to some embodiments , each node in the Holochain network 
may self - elect its own agent location , store radius and query 
radius . A node requesting a value may first examine the 
availability of the requested value in its store radius based on 
its agent location , and then expend the inquiry into the query 
radius , and so on . According to some embodiments , a node 
may go through a bootstrapping phase for joining a new 
Holochain network . The joining node may publish its agent 
location , store radius and query radius until after it has 
expand to a threshold number of nodes within the radius that 
the joining node attempts to store or query . The threshold 
number may be associated with a resilience factor . Accord 
ing to some embodiments , the nodes in the Holochain 
network may push data to a storing node or pull data from 
another node through gossiping . 
[ 0126 ] In the following description , for purposes of expla 
nation , numerous specific details are set forth to provide a 
thorough understanding of the disclosed concepts . As part of 
this description , some of this disclosure's drawings repre 
sent structures and devices in block diagram form to avoid 
obscuring the disclosure . In the interest of clarity , not all 

[ 0128 ] Relaxed , agent - centric distributed hash table 
( RRDHT ) aims at providing quick peer discovery during 
content addressing in a Holochain network . In RRDHT , 
nodes may self - elect and publish separate “ store radius ” and 
" query radius ” values based on an " agent loc ” or “ agent 
location ” of the node . The agent locations may represent the 
individual locations of the nodes in the Holochain net 
work — the Holochain network may discover the nodes 
based on their agent locations . The agent loc may be any 
kind of objects , such as a number , a string , a symbol , etc. 
According to some embodiments , the agent loc may be 
determined based on an identity of the node ( “ agent iden 
tity ' ) . For example , the identity of the node may be asso 
ciated with a public key , for instance a binary number , in a 
cryptographic , digital signature of the human user associated 
with the node . Alternatively , the identity of the node may be 
an object associated with the content stored by the node . The 
term " content " may represent any type of objects , such as a 
number , a data , a symbol , a value , a piece of code , a 
documentation , and so on . Furthermore , the identity of the 
node may be a hash , for example , the hash of the public key , 
to provide further security . The agent loc of a node may be 
determined based on the agent identity of the node . For 
example , the agent loc may be an unsigned integer number 
wrapped to a fixed range , for instance , between 0 and 
4,294,967,295 ( or FFFFFFFF in hexadecimal ) . As shown by 
the Python code below , given that the agent identity of a 
node is a 32 - byte hash , for example , the agent loc of the node 
may be derived by compressing the binary agent identity 
into a 4 - byte number by applying an XOR operation to every 
successive four bytes of the agent identity . 

let hash = b “ fake hash fake hash fake hash ... " ; 
let mut loc : [ u8 ; 4 ] = [ 0 ; 4 ) ; 
loc.clone_from_slice ( & hash [ 0..4 ] ) ; 
for i in ( 4..32 ) .step_by ( 4 ) { 

loc [ 0 ] ^ = hash [ i ] ; 
loc [ 1 ] ^ = hash [ i + 1 ] ; 
loc [ 2 ] hash [ i + 2 ] ; 
loc [ 3 ] ^ = hash [ i + 3 ] ; 

} 

[ 0129 ] Discovery in Holochain Network According to 
RRDHT 

[ 0130 ] Given a requested value , one primary goal of 
RRDHT is for a random node to be able to find the 
appropriate node that stores and accordingly retrieve the 
requested value . This discovery process can be explained 
with reference to FIG . 8. For ease of illustration , only 8 
nodes ( 805 , 810 , 815 , 820 , 825 , 830 , 835 and 840 ) are 
depicted in exemplary Holochain network 800. In this 
specific example , because the agent locations of the nodes 
are defined as integers wrapped to a fixed range , Holochain 
network 800 may be represented by a ring . Moreover , nodes 
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805 , 810 , 815 , 820 , 825 , 830 , 835 and 840 may reside along 
the ring with even or unequal distances from each other as 
shown in FIG . 8 . 

[ 0131 ] Node 805 ( “ requesting node ” ) may request a value 
which is stored at node 825 ( “ target node ” ) . Initially , node 
805 may not know that node 825 stores the requested value , 
nor does node 805 may know the address of node 825. In a 
further extreme scenario , node 805 may never establish a 
prior connection with node 825_node 805 may not know 
node 825 exists in Holochain network 800 at all . The term 
“ connection ” may indicate a networking communication in 
any type of manner , for example , through a land telephone 
network , a wired network , a wireless network , a mobile 
network , a satellite network , or a combination of the above , 
etc. 

may 

[ 0132 ] The discovery of node 825 by node 805 may be 
performed based on the store radius and query radius of node 
805 as well as the agent locations of the nodes in Holochain 
network 800. The store radius may correspond to a bucket of 
peer nodes , within agent storage arc 865 , whose storage 
content the requesting node may have knowledge about . 
According to some embodiments , it may be preferential to 
place the bucket of peer nodes close to the requesting node 
thus reducing the hops in discovery . This may associate the 
store radius with the agent locations of the nodes in the 
Holochain network . For example , if the agent loc of a node 
is 42 , a store radius of 2 may indicate a bucket of peer nodes 
with agent locations in the range of 40-44 . Accordingly , a 
store radius of zero may represent the node itself . Referring 
to FIG . 8 , a store radius of 1 of node 805 may indicate a 
bucket of peer nodes , such as node 810 and 840 , which may 
reside within the distance of the store radius surrounding the 
requesting node . Moreover , node 805 may have knowledge 
about the storage content of nodes 810 and 840 within the 
store radius . 
[ 0133 ] Node 805 may also have a query radius . The query 
radius may indicate a bucket of nodes ( " a bucket of refer 
ences ” ) , within agent storage arc 870 , with which the 
requesting node may have connections — the addresses of the 
bucket of nodes in the query radius have been known to the 
requesting node . Therefore , the query radius of a node may 
always be equal to , or greater than , the store radius of the 
node . Referring to FIG . 8 , the query radius of node 805 may 
produce two references ( besides nodes 810 and 840 in the 
store radius ) — nodes 815 and 835 — whose addresses may 
have been known to node 805. Unlike nodes 810 and 840 in 
the store radius , node 805 may not have information about 
the content stored by nodes 815 and 835. Instead , node 805 
may merely know the existence of nodes 815 and 835 exist 
in Holochain network 800 and have their addresses . The 
term " address " may refer to any type of addresses according 
to a networking protocol , for example , point - to - point pro 
tocol ( PPP ) , user datagram protocol ( UDP ) , transmission 
control protocol / Internet protocol ( TCP / IP ) , etc. 
[ 0134 ] Node 805 may perform the discovery as the fol 
lowing to retrieve the requested value from node 825. First , 
node 805 may examine , as shown by arrows 845 and 850 , 
whether the requested value is available in its store radius 
whether the requested value is stored at nodes 810 or 
840 — because node 805 may already have knowledge about 
the storage content of nodes 810 and 840. The examination 
of nodes 810 and 840 may be carried out in order or in 

parallel . If the requested value is available in the store 
radius , the storing node may return the requested value , and 
the discovery may terminate . 
[ 0135 ] Conversely , if the requested value is not available 
in the store radius , node 805 may further the discovery to the 
bucket of nodes in the query radius , such as nodes 815 and 
835. Because node 805 maintains the addresses indexing of 
nodes 815 and 835 , node 805 may be able to communicate 
with nodes 805 and 835 and inquire whether they include the 
requested value . According to some embodiments , node 805 
may inquire the node in the query radius which has a closest 
distance to the target node 825. The distance may be 
measured according to the agent locations of the nodes , 
which , in turn , may be associated with the storage content of 
each individual nodes , as described above . This way , 
RRDHT may associate the requested value with agent 
locations in a manner analogous to the relationship between 
a value / key pair in a hash table . In FIG . 8 , node 805 may 
have two nodes 815 and 835 , in the query radius . Between 
these two references , node 835 may have a closest distance 
to target node 825. Thus , node 805 may inquire node 835 , as 
shown by arrow 855 , about the availability of the requested 
value . If node 835 stores the requested value , node 835 may 
return the requested value , and the discovery may terminate . 
[ 0136 ] Conversely , if the requested value is not available 
in the query radius , the foregoing discovery may be repeated 
around a new center at node 835. For example , node 835 
may also have a store radius and a query radius . The store 
radius indicate a bucket of nodes whose storage content 
node 835 may have knowledge about , while the query radius 
may correspond to a bucket of nodes with which node 835 
may have connections . Node 835 may continue the discov 
ery by first examining its store radius and then expand to the 
query radius , and so on . In this specific example in FIG . 8 , 
target node 825 may reside within the store radius of node 
835. Thus , in response to the examination of node 835 , as 
shown by arrow 860 , node 825 may return the requested 
value to node 835 which may further forward the requested 
value to node 805 , and the discovery may end . 
[ 0137 ] FIG . 9 illustrate an exemplary discovery process 
900 in a Holochain network . The requesting node may start 
from a requesting node looking for a requested value ( block 
905 ) . The requesting node may first examine whether the 
requested value is stored by any of peer nodes in the store 
radius based on the agent loc of the requesting node ( blocks 
910 and 915 ) . If the requested value is available in the store 
radius , the storing node may return the requested value to the 
requesting node ( block 920 ) , and the requesting node may 
terminate the discovery ( block 925 ) . Conversely , if the 
requested value is not available , the requesting node may 
expand its search to the peer nodes in the query radius ( block 
930 ) . The requesting node may inquire whether the 
requested value is stored by any of the peer nodes in the 
query radius ( block 935 ) . According to some embodiments , 
the requesting node may inquire the node ( “ inquired node ” ) 
in the query radius that has a closest distance to the target 
node . The distance may be measured based on the agent 
locations of the nodes . If the requested value is stored in the 
query radius , the storing node may return the requested 
value ( block 920 ) and the discovery may end ( block 925 ) . 
Conversely , if the requested value is not available in the 
query radius , the discovery may shift the center to the 
inquired node ( block 940 ) . The inquired node may continue 
the discovery by repeating the foregoing searching process . 
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[ 0138 ] According to some embodiments , requesting node 
805 may choose to keep references to a certain number of 
additional nodes outside the query radius , for example , node 
410 in FIG . 4. When a node discovers such a reference , it 
will decide whether the node should be kept in favor of 
existing references . For example , the node may give a 
preference to closer nodes . This algorithm gives preference 
to closer nodes , and could be something like the following : 

[ 0139 ] Given the loc space remaining outside the query 
radius 

[ 0140 ] Call a 34 % sized zone exactly in the center zone 
" X3 " 

[ 0141 ] Call two adjacent 22 % sized zones “ X2A ” and 
" X2B ” 

[ 0142 ] Call the remaining two 11 % sized zones “ X1A ” 
and “ X1B ” 

[ 0143 ] Nodes will track up to 2 peers in each zone . If they 
already have two peers , a quality algorithm will decide 
which to keep based on responsiveness , size of store , query 
radii , and other metrics . Imagine a worst - case scenario : a 
DHT network with 4 billion nodes . The network stores so 
much data that all nodes choose to only index a radius of 1 
and keep a query radius of 2. A worst - case query should be 
O ( log n ) / roughly 22 hops . 
[ 0144 ] But individual node references do not take up that 
much memory space , so nodes could , in fact , store a great 
deal more references than the above algorithm , and publish 
a much wider query radius than 2. These factors greatly 
reduce the number of hops to query . In most real - world 
applications , it should be trivial to achieve full query radius 
coverage , thus reducing the hops for any query to 1 . 
[ 0145 ] Bootstrapping 
[ 0146 ] A node that would like to join a Holochain network 
may first go through a bootstrap process . During bootstrap 
ping , the joining node may need to know the address of at 
least another node- a bootstrap node — that is already par 
ticipating in the Holochain network . Upon joining the Holo 
chain network , the joining node may reset its address 
indexing , store radius and query radius to zero . The joining 
node may not self - elect any radii without first knowing that 
it may see a threshold number of nodes within the radius that 
the joining node attempts to store or query . According to 
some embodiments , the threshold may be associated with a 
resilience factor ( “ R ” ) which represent a level of availability 
in case one of more of the nodes within the radius become 
offline . For example , if the resilience factor is 25 , the joining 
node may not publish either a store or query radius greater 
than zero until after the joining node has expended enough 
such that there are 25 peer nodes reside within the radius that 
the joining node attempts to publish . 
[ 0147 ] Publishing Date and Gossip 
[ 0148 ] Push 
[ 0149 ] In a Holochain network , publishing data may 
require a node ( “ publishing node ” ) communicating with a 
peer node which claims responsibility for storing that data . 
The publishing node may then push that data to the storing 
node in an exponential manner , for example , using a pro 
tocol with low overhead such as UDP . The publishing node 
may already know what peer nodes should be storing the 
data because those peer nodes are in the bucket within its 
store radius . According to some embodiments , depending on 
the networking protocol of the Holochain network , it may be 
preferred to publish the data to more than one peer nodes to 
achieve better reliability and availability . Further , the pub 

lishing node may re - publish the data periodically or when 
the date receives a new update . 
[ 0150 ] Pull 
[ 0151 ] After a node is initially synchronizing to the net 
work to achieve a store radius , the node may need to 
continuously maintain consistency afterwards . The node 
may gossip with other peer nodes which overlap , at least 
partially , the same store radius . The nodes may compare the 
storage content with and pull data from , as needed , each 
other to remain the synchronization and data consistency . 
[ 0152 ] The various embodiments described above are pro 
vided by way of illustration only and should not be con 
structed to limit the scope of the disclosure . Various modi 
fications and changes can be made to the principles and 
embodiments herein without departing from the scope of the 
disclosure and without departing from the scope of the 
claims . 
What is claimed is : 
1. A system for coordinating distributed computation , the 

system comprising : 
a plurality of nodes , each node including a processing 

element , a network interface , and a memory , the plu 
rality of nodes communicatively coupled together via a 
network ; 

a keyspace defined across the plurality of nodes , the 
keyspace having a simple closed shape with a number 
of dimensions ; 

wherein each node of the plurality of nodes has a location 
in the keyspace as defined by a hash function mapping 
inputs to points in the keyspace , and a location in the 
network ; 

wherein a first node has a first store radius , the first store 
radius describing a closed shape in the keyspace asso 
ciated with the location of the node in the keyspace , the 
first store radius having one fewer dimension than the 
number of dimensions in the keyspace , and wherein the 
memory in the first node stores information at memory 
locations associated with keyspace locations within the 
first store radius ; 

wherein first node has a first query radius , the first query 
radius describing a closed shape in the keyspace asso 
ciated with the location of the node in the keyspace , the 
first query radius having one fewer dimensions than the 
number of dimensions in the keyspace , wherein the first 
query radius is larger than the first store radius ; 

wherein a first subset of the nodes from the plurality of 
nodes have keyspace locations within the first query 
radius , and the first node stores the network location of 
the first subset of the nodes , each of the nodes in the 
first subset of the nodes having a secondary store radius 
and a secondary query radius ; 

wherein the processing element of each node is operable 
to respond to a request for information stored at an 
arbitrary location in the keyspace by : 

if the requested information has a keyspace location 
within the store radius , returning the value of the 
information from the first node ; 

if the requested information has a keyspace location 
outside the store radius but inside the query radius , 
querying , via the network , a second node from the first 
subset of the nodes within the query radius and return 
ing the value of the information returned from the 
second node with a secondary store radius encompass 
ing the requested keyspace location ; 
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returning a network location referral to a third node , 
wherein the keyspace location of the third node has a 
lower distance from the keyspace location of the 
requested information than the keyspace location of the 
first node . 

2. The system of claim 1 wherein the processing element 
of each node is operable to respond to the request for 
information by one of responding with information retrieved 
from an associated memory location in a node ; responding 
with the output of a calculation ; and responding with the 
output of a calculation , wherein one of the inputs to the 
calculation was retrieved from a memory location in a node . 

3. The system of claim 2 wherein the keyspace forms a 
two - dimensional circle . 

4. The system of claim 2 wherein the keyspace is non 
Euclidean . 

5. The system of claim 2 wherein the location of the first 
node in the keyspace is inside the store radius of the first 
node . 

6. The system of claim 2 wherein the location of the first 
node in the keyspace is inside the query radius of the first 
node . 

7. The system of claim 2 wherein the first node further 
stores the network location of a second subset of the nodes , 
wherein each of the nodes in the second subset of the nodes 
has a keyspace location outside the first query radius , and 
each of the nodes in the second subset having a tertiary store 
radius and a tertiary query radius . 

8. The system of claim 7 wherein none of the tertiary 
query radii overlap with the first query radius . 

9. The system of claim 7 wherein the maximum number 
of nodes in the second subset of the nodes is capped . 

10. A method for coordinating distributed computation , 
the method comprising : 

communicatively coupling a plurality of nodes via a 
network , each node including a processing element , a 
network interface , a network location , and a memory ; 

defining a keyspace across the plurality of nodes , the 
keyspace having a simple closed shape with a number 
of dimensions ; 

assigning each node of the plurality of nodes a keyspace 
location , a store radius , and a query radius ; 

each keyspace location being defined by a hash function 
mapping inputs to points in the keyspace ; 

each store radius describing a closed shape in the key 
space having one fewer dimension than the number of 
dimensions in the keyspace ; 

each query radius describing a closed shape in the key 
space having one fewer dimension than the number of 
dimensions in the keyspace , where the query radius is 
greater than the store radius ; 

receiving a request at a first node , the request being 
associated with a keyspace location ; 

if the requested information has a keyspace location 
within the store radius of the first node , responding 
from the first node ; 

if the requested information has a keyspace location 
outside the store radius of the first node but inside the 
query radius of the first node , querying , via the net 
work , a second node from the first subset of the nodes 
within the query radius and returning the response 
received from the second node ; or 

returning a network location referral to a third node , 
wherein the distance from the keyspace location of the 
third node to the keyspace location associated with the 
request is less than the distance from the keyspace 
location of the first node to the keyspace location 
associated with the request . 

11. The method of claim 10 wherein returning a response 
includes one of responding with information retrieved from 
a memory location associated with a node ; responding with 
the output of a calculation ; and responding with the output 
of a calcul n , wherein one of the inputs to the calculation 
was retrieved from a memory location in a node . 

12. The method of claim 11 wherein the keyspace location 
of each node is contained within the store radius of the same 
node . 

13. The method of claim 11 wherein the store radius of 
each node is located within the query radius of the same 
node . 

14. The method of claim 11 wherein the keyspace forms 
a two - dimensional circle . 

15. The method of claim 11 wherein the keyspace is 
non - Euclidean . 

16. The method of claim 11 wherein the third node has a 
keyspace location outside the query radius of the first node . 

17. A node in a distributed processing system , the node 
comprising : 

a processing element , a network interface , a network 
location , a first keyspace location , and a memory , 
wherein the processing element is operable to : 

compute a requested location within a multidimensional 
keyspace corresponding to a distributed hash table ; 

store and retrieve information corresponding to a first 
closed area within the keyspace in the memory ; 

store and retrieve information corresponding to a second 
closed area within the keyspace in the memory ; 

receive a request via the network interface , the request 
being associated with a keyspace location ; 

if the request keyspace location is within the first closed 
area within the keyspace , responding to the request 
using the information retrieved from the memory cor 
responding to the request keyspace location ; 

if the request keyspace location is within the second 
closed area within the keyspace , forwarding the request 
to a network location retrieved from the memory cor 
responding to the request keyspace location ; or 

returning a network location referral , wherein the network 
location referral target is closer to the request keyspace 
location than first keyspace location . 

18. The node of claim 17 wherein responding to the 
request using the information retrieved from the memory 
corresponding to the request keyspace location includes one 
of responding with information retrieved from the memory ; 
responding with the output of a calculation ; and responding 
with the output of a calculation , wherein one of the inputs to 
the calculation was retrieved from the memory . 

19. The node of claim 18 wherein the keyspace location 
of the node is contained within the first closed area within 
the keyspace . 

20. The node of claim 19 wherein the first closed area 
within the keyspace is contained within the second closed 
area within the keyspace . 


